大橙子网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
一般来说,Python程序员可能是这样写main()函数的:
成都创新互联公司自2013年创立以来,是专业互联网技术服务公司,拥有项目网站设计制作、成都网站设计网站策划,项目实施与项目整合能力。我们以让每一个梦想脱颖而出为使命,1280元尤溪做网站,已为上家服务,为尤溪各地企业和个人服务,联系电话:13518219792
"""Module docstring.
This serves as a long usage message.
"""import sysimport getoptdef main():
# parse command line options
try:
opts, args = getopt.getopt(sys.argv[1:], "h", ["help"]) except getopt.error, msg: print msg print "for help use --help"
sys.exit(2) # process options
for o, a in opts: if o in ("-h", "--help"): print __doc__
sys.exit(0) # process arguments
for arg in args:
process(arg) # process() is defined elsewhereif __name__ == "__main__":
main()1234567891011121314151617181920212223242526
Guido也承认之前自己写的main()函数也是类似的结构,但是这样写的灵活性还不够高,尤其是需要解析复杂的命令行选项时。为此,他向大家提出了几点建议。
添加可选的 argv 参数
首先,修改main()函数,使其接受一个可选参数 argv,支持在交互式shell中调用该函数:
def main(argv=None):
if argv is None:
argv = sys.argv # etc., replacing sys.argv with argv in the getopt() call.1234
这样做,我们就可以动态地提供 argv 的值,这比下面这样写更加的灵活:
def main(argv=sys.argv):
# etc.12
这是因为在调用函数时,sys.argv 的值可能会发生变化;可选参数的默认值都是在定义main()函数时,就已经计算好的。
但是现在sys.exit()函数调用会产生问题:当main()函数调用sys.exit()时,交互式解释器就会推出!解决办法是让main()函数的返回值指示退出状态(exit status)。因此,最后面的那行代码就变成了这样:
if __name__ == "__main__":
sys.exit(main())12
并且,main()函数中的sys.exit(n)调用全部变成return n。
定义一个Usage()异常
另一个改进之处,就是定义一个Usage()异常,可以在main()函数最后的except子句捕捉该异常:
import sysimport getoptclass Usage(Exception):
def __init__(self, msg):
self.msg = msgdef main(argv=None):
if argv is None:
argv = sys.argv try: try:
opts, args = getopt.getopt(argv[1:], "h", ["help"]) except getopt.error, msg: raise Usage(msg) # more code, unchanged
except Usage, err: print sys.stderr, err.msg print sys.stderr, "for help use --help"
return 2if __name__ == "__main__":
sys.exit(main())123456789101112131415161718192021222324
这样main()函数就只有一个退出点(exit)了,这比之前两个退出点的做法要好。而且,参数解析重构起来也更容易:在辅助函数中引发Usage的问题不大,但是使用return 2却要求仔细处理返回值传递的问题。
pywt.waverec(coeffs, wavelet, mode='symmetric', axis=-1)
It may sometimes be desired to run waverec with some sets of coefficients omitted. This can best be done by setting the corresponding arrays to zero arrays of matching shape and dtype. Explicitly removing list entries or setting them to None is not supported.
Specifically, to ignore detail coefficients at level 2, one could do:
coeffs[-2] = np.zeros_like(coeffs[-2])
##################################################################
coeffs=pywt.wavedec(data_current,'db6',level=3)
for i in range(1,4):
coeffs[i] = np.zeros_like(coeffs[i])
A3 = pywt.waverec(coeffs, 'db6')
一、前言
在python中,函数参数的定义和传递有以下几种方式:
语法
意义
def func(name)
普通参数,可以根据位置匹配,也可以根据key来匹配
def func(name=value)
默认参数,当参数没有传递时,使用默认值
def func(*iteratable)
将所有剩下的未匹配的参数收集至一个tuple中
def func(**dictionary)
将剩下未匹配的参数收集值一个dict中
def func(*, name)
必须使用key来匹配参数
def func(*other, name)
必须使用key来匹配参数
func(value)
函数调用,参数值按传递的参数顺序匹配
func(name=value)
函数调用,参数值根据key来匹配
func(*iteratable)
函数调用,将iteratable容器中的参数展开,按位置匹配对应的函数参数
func(**dictionary)
函数调用,将dict中的参数展开,按key值来匹配对应的函数参数
在python中,参数可以按照顺序传递,在调用函数时,参数的值按照传递的顺序,从左到右依次匹配。并且还可以给参数传递默认值,这都很好理解,因为在C、C++、Java等许多语言中,函数的参数传递都是按照这种方法来传递的。
但python的参数定义和传递除了按照顺序传递以及可以给默认值外,它还有其它的一些特点,在进一步讲解之前,首先说明python中函数调用中参数匹配的顺序:
按照顺序,给没有key的参数赋值,意味着传递参数时,需按顺序匹配的参数必须出现在按key匹配的参数之前;
给按照key匹配的参数赋值;
将多余的按照顺序匹配但未匹配的参数值归入*name的tuple中;
将多余未匹配上的按照key进行匹配的参数值归入**name的dict对象中;
将为匹配上的且具有默认值的参数赋默认值
二、按key匹配参数
对于C、C++这种语言,在调用函数时,系统会首先将函数地址压入堆栈,其次按参数的从右往左的顺序,一次压入堆栈。因此,C、C++这种语言它们只支持按顺序匹配形参。而python的做法不同,参数除了可以按顺序匹配,还可以按照参数名称来匹配。如:
def func(name, age):
print(name, age)
对于这个函数,以下的调用时等价的:
func('rechar', 27) #按顺序匹配
func(name = 'rechar', age = 27) #按参数名称匹配,在运行时告诉系统参数name的值为‘rechar’,age的值为27
func(age = 27, name = 'rechar') #按参数名称匹配
func('rechar', age = 27) #name是按顺序匹配,age按名称匹配
在python中,当按照参数名称进行匹配参数是,参数传递的顺序是可以任意的,不要求按照函数定义中参数的顺序进行传递。在使用名称匹配时,如果需要混合使用按顺序匹配规则,则按顺序匹配的参数必须出现在按key匹配的参数前,否则会报错:
func(name = 'rechar', 27)
以上调用会报如下错误:
三、函数定义中的”*name“
python在给按顺序匹配和按key匹配的参数赋完值后,如果发现调用者传入的参数仍有未匹配上的会发生什么情况呢?看一下下面的例子:
func('rechar', 27, 32)
运行时我们看到如下错误:
Traceback (most recent call last):
File "E:\tmp\tt.py", line 5, in module
func('rechar', 27, 32)
TypeError: func() takes 2 positional arguments but 3 were given
哦,python会抱怨我们传递的参数太多了。那如果确实在一些情况下,我们无法保证传递的参数数量一定和函数需要的参数数相等怎么办呢?这是就是*iterable这种参数该登场的时候了,假如在定义函数定义是,我们增加了一个参数,这个参数以一个”*“开始,那么这个参数实际上是一个tuple类型。假如传递的参数比需要的多,那那些多余的参数会被放入这个tuple中。例如,
def func(name, age, *other):
print(name, age, other)
那么,
func('rechar', 27, 32)
这个调用的输出如下:
rechar 27 (32,)
四、函数定义中的”**name“
python在将所有未匹配上的非按名称匹配的参数装入参数中的tuple之后,假如还有未匹配上的按名称匹配的参数那情况会怎样呢?首先来看一下下面的示例:
def func(name, age):
print(name, age)
func(name = 'rechar', age = 27, pay='1800')
执行时,python又抱怨了:
Traceback (most recent call last):
File "E:\tmp\tt.py", line 5, in module
func(name = 'rechar', age = 27, pay='1800')
TypeError: func() got an unexpected keyword argument 'pay'
它说func这个函数没有名称为”pay“的参数,这种情况或许出现在我们函数重构之后,原来函数时有这个参数的。而这个函数调用可能在别处没有被修改。假设即使给了”pay“这个参数,程序的正确性不受影响,没错,这就是”**name“参数的用武之地了。
假如在函数定义中,给函数增加一个以”**“开头的参数,那么这个参数实际上是一个dict对象,它会将参数调用中所有没有被匹配的按名称传递的参数都放入这个dict中。例如,
def func(name, age,**other):
print(name, age, other)
func(name = 'rechar', age = 27, pay='1800')
那么运行结果输出,
rechar 27 {'pay': '1800'}
看到了吧,这里的other就将没有匹配的”pay=‘1800’“收入囊中了。
五、规定调用必须按名称匹配
当我们在定义函数时,如果第一个参数就是”*name“参数,那么可想而知,我们无法使用按顺序匹配的方式传递,因为所有的按顺序传递的参数值最终的归宿都会是这里的tuple当中。而为了给后续的参数传递值,我们只能使用按名称匹配的方法。
六、”**“参数只能出现在最后一个形参之后
想想为什么?其实很好理解,因为出现在”**“形参之后的形参,无论使用按顺序传递还是按名称传递,最终都无法到达参数值真正应该需要到的地方。所以python规定,如果需要”**“参数,那它必须是最后一个形参。否则python会报语法错误。
七、函数调用中的”*“
在表格中我们看到了有func(*iteratable)的调用,这个调用的意思是,iteratable必须是一个可迭代的容器,比如list、tuple;作为参数传递值,它最终传递到函数时,不是以一个整体出现,而是将其中的元素按照顺序传递的方式,一次赋值给函数的形参。例如,
li = ['rechar', 27]
func(*li)
这个函数调用与
func('rechar', 27)
是等价的。
八、函数调用中的”**“
知道”*“在函数调用中的效果之后,也就很好理解”**“的作用了。它是将传递进来的dict对象分解,每一个元素对应一个按名称传递的参数,根据其中的key对参数进行赋值。
Pycharm和Python关系:简单来说Pycharm是一个代码编辑器,是目前最流行的代码编辑器之一,用于编写python代码。
Python是一个代码解释器,用于将Python代码翻译成计算机可以理解的指令。
PyCharm是Python的专用IDE,地位类似于Java的IDE Eclipse。功能齐全的集成开发环境同时提供收费版和免费版,即专业版和社区版。PyCharm是安装最快的IDE,且安装后的配置也非常简单,因此PyCharm基本上是数据科学家和算法工程师的首选IDE。
pycharm和python区别:
1、首先它们的下载地址和安装的方式不同。
2、python是一种基本编译环境,就像java和jar一样。pycharm是一种集成开发环境,为了能够让你快速编写代码,便于调试。
3、简单来说:Python是个解释器,pycharm是为Python编程语言专门打造的一款IDE(集成开发环境)。在pycharm中编写Python程序,最终还是要有Python解释器的支持,两者配合工作。
具体区别如下
1:打印时,py2需要可以不需要加括号,py3 需要python 2 :print ('lili') , print 'lili'python 3 : print ('lili') python3 必须加括号exec语句被python3废弃,统一使用exec函数
2:内涵
Python2:1,臃肿,源码的重复量很多。 2,语法不清晰,掺杂着C,php,Java的一些陋习。
Python3:几乎是重构后的源码,规范,清晰,优美。
3: 输出中文的区别python2:要输出中文 需加 # -*- encoding:utf-8 -*-Python3 :直接输出
4:input不同python2 :raw_input python3 :input 统一使用input函数
5:指定字节python2在编译安装时,可以通过参数-----enable-unicode=ucs2 或-----enable-unicode=ucs4分别用于指定使用2个字节、4个字节表示一个unicode;python3无法进行选择,默认使用 ucs4查看当前python中表示unicode字符串时占用的空间:impor sysprint(sys.maxunicode)#如果值是65535,则表示使用usc2标准,即:2个字节表示#如果值是1114111,则表示使用usc4标准,即:4个字节表示
6:py2:xrangerangepy3:range 统一使用range,Python3中range的机制也进行修改并提高了大数据集生成效率
7:在包的知识点里包:一群模块文件的集合 + __init__区别:py2 : 必须有__init__ py3:不是必须的了
8:不相等操作符""被Python3废弃,统一使用"!="
9:long整数类型被Python3废弃,统一使用int
10:迭代器iterator的next()函数被Python3废弃,统一使用next(iterator)
11:异常StandardError 被Python3废弃,统一使用Exception
12:字典变量的has_key函数被Python废弃,统一使用in关键词
13:file函数被Python3废弃,统一使用open来处理文件,可以通过io.IOBase检查文件类型
其实不只是python,各种语言都是这样。唯一的办法就是多写,然后不停的回头去看自己写的代码,不停的去重构。同时也要多读,现在网上太多开源的代码,去观摩,一点一点的积累。