大橙子网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
1.numpy的导入和使用
十年的永登网站建设经验,针对设计、前端、开发、售后、文案、推广等六对一服务,响应快,48小时及时工作处理。全网营销推广的优势是能够根据用户设备显示端的尺寸不同,自动调整永登建站的显示方式,使网站能够适用不同显示终端,在浏览器中调整网站的宽度,无论在任何一种浏览器上浏览网站,都能展现优雅布局与设计,从而大程度地提升浏览体验。创新互联从事“永登网站设计”,“永登网站推广”以来,每个客户项目都认真落实执行。
data1=mat(zeros((
)))
#创建一个3*3的零矩阵,矩阵这里zeros函数的参数是一个tuple类型(3,3)
data2=mat(ones((
)))
#创建一个2*4的1矩阵,默认是浮点型的数据,如果需要时int类型,可以使用dtype=int
data3=mat(random.rand(
))
#这里的random模块使用的是numpy中的random模块,random.rand(2,2)创建的是一个二维数组,需要将其转换成#matrix
data4=mat(random.randint(
10
,size=(
)))
#生成一个3*3的0-10之间的随机整数矩阵,如果需要指定下界则可以多加一个参数
data5=mat(random.randint(
,size=(
))
#产生一个2-8之间的随机整数矩阵
data6=mat(eye(
,dtype=
int
))
#产生一个2*2的对角矩阵
a1=[
]; a2=mat(diag(a1))
#生成一个对角线为1、2、3的对角矩阵
#coding:utf-8
#一阶导
def fun1(X, WINDOW = 5):
result = []
for k in range(WINDOW, len(X)-WINDOW):
mid = (X[k+WINDOW]-X[k-WINDOW])/(2*WINDOW)
result.append(mid)
return result
#二阶导
def fun2(X, WINDOW = 5):
result = []
for k in range(WINDOW, len(X)-WINDOW):
mid = (X[k+WINDOW]-2*X[k]+X[k-WINDOW])/(WINDOW*WINDOW)
result.append(mid)
return result
X = [1,2,3,4,5,6,7,8,9,10]
result1 = fun1(X, 3)
result2 = fun2(X, 2)
如上自己写,或者用numpy自带的多项式的n阶导函数。
得到多项式的n阶导函数:多项式.deriv(m = n)
from numpy import *
X = [1,2,3,4,5,6,7,8,9,10]
result = X.deriv(m = n) #n是导数阶数
打开python运行环境。
导入微分的模块包:from sympy import *。
定义符号变量:x = symbols('x')
定义一个函数:f = x**9
diff = diff(f,x)求导
最后输入diff,即可显示其变量值了。
众多python培训视频,尽在python学习网,欢迎在线学习!
矩阵的微分是函数导数的概念形式推广到矩阵的情形。矩阵微分根据对不同变量的求导,有不同形式。
定义一: 设m×n矩阵
A(t)=【amn(t)】
的每个元素aij(t)都是自变量t的可导函数,则称m×n矩阵【δamn(t)/δt】为A(t)关于变量t的导数,记为δA(t)/δt;
定义二:设A为m×n阵,f(A)为矩阵A的数量值函数。若f(A)关于A的任一元素aij的偏导δf/ δaij都存在,则称【δf/δamn】为f(A)关于A=(aij)的导数,记为δf(A)/δA;
定义三:设A为m×n维矩阵型变量,A=(aij),G(A)维A的矩阵值函数(p×q维)即G(A)=【g(A)pq】,其中g(A)ij都为A的数值量函数,且关于A可导,则称【δG/δaij】=△⊙G(△应是倒三角,为[δ/δaij],Hamilton算子矩阵;⊙应是乘号加圈,为Kronecker积);
可以参考矩阵论的相关书籍。