大橙子网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
Docker 提供了一个与 Docker 守护进程交互的 API (称为Docker Engine API),我们可以使用官方提供的 Go 语言的 SDK 进行构建和扩展 Docker 应用程序和解决方案。
创新互联是专业的汤原网站建设公司,汤原接单;提供网站设计、成都网站建设,网页设计,网站设计,建网站,PHP网站建设等专业做网站服务;采用PHP框架,可快速的进行汤原网站开发网页制作和功能扩展;专业做搜索引擎喜爱的网站,专业的做网站团队,希望更多企业前来合作!
转自:
整理:地鼠文档
通过下面的命令就可以安装 SDK 了:
该部分会介绍如何使用 Golang + Docker API 进行管理本地的 Docker。
第一个例子将展示如何运行容器,相当于 docker run docker.io/library/alpine echo "hello world" :
还可以在后台运行容器,相当于 docker run -d bfirsh/reticulate-splines :
列出正在运行的容器,就像使用 docker ps 一样:
如果是 docker ps -a ,我们可以通过修改 types.ContainerListOptions 中的 All 属性达到这个目的:
通过上面的例子,我们可以获取容器的列表,所以在这个案例中,我们可以去停止所有正在运行的容器。
通过指定容器的 ID,我们可以获取对应 ID 的容器的日志:
获取本地所有的镜像,相当于 docker image ls 或 docker images :
拉取指定镜像,相当于 docker pull alpine :
除了公开的镜像,我们平时还会用到一些私有镜像,可以是 DockerHub 上私有镜像,也可以是自托管的镜像仓库,比如 harbor 。这个时候,我们需要提供对应的凭证才可以拉取镜像。
值得注意的是:在使用 Docker API 的 Go SDK 时,凭证是以明文的方式进行传输的,所以如果是自建的镜像仓库,请务必使用 HTTPS !
我们可以将一个已有的容器通过 commit 保存成一个镜像:
当然,除了可以管理本地的 Docker , 我们同样也可以通过使用 Golang + Docker API 管理远程的 Docker 。
默认 Docker 是通过非网络的 Unix 套接字运行的,只能够进行本地通信( /var/run/docker.sock ),是不能够直接远程连接 Docker 的。
我们需要编辑配置文件 /etc/docker/daemon.json ,并修改以下内容(把 192.168.59.3 改成你自己的 IP 地址),然后重启 Docker :
创建 client 的时候需要指定远程 Docker 的地址,这样就可以像管理本地 Docker 一样管理远程的 Docker 了:
现在已经有很多可以管理 Docker 的产品,它们便是这样进行实现的,比如: portainer 。
这个问题说来话长,我先表达一下我的观点,Go语言从语法层面提供区分错误和异常的机制是很好的做法,比自己用单个返回值做值判断要方便很多。
上面看到很多知乎大牛把异常和错误混在一起说,有认为Go没有异常机制的,有认为Go纯粹只有异常机制的,我觉得这些观点都太片面了。
具体对于错误和异常的讨论,我转发一下前阵子写的一篇日志抛砖引玉吧。
============================
最近连续遇到朋友问我项目里错误和异常管理的事情,之前也多次跟团队强调过错误和异常管理的一些概念,所以趁今天有动力就赶紧写一篇Go语言项目错误和异常管理的经验分享。
首先我们要理清:什么是错误、什么是异常、为什么需要管理。然后才是怎样管理。
错误和异常从语言机制上面讲,就是error和panic的区别,放到别的语言也一样,别的语言没有error类型,但是有错误码之类的,没有panic,但是有throw之类的。
在语言层面它们是两种概念,导致的是两种不同的结果。如果程序遇到错误不处理,那么可能进一步的产生业务上的错误,比如给用户多扣钱了,或者进一步产生了异常;如果程序遇到异常不处理,那么结果就是进程异常退出。
在项目里面是不是应该处理所有的错误情况和捕捉所有的异常呢?我只能说,你可以这么做,但是估计效果不会太好。我的理由是:
如果所有东西都处理和记录,那么重要信息可能被淹没在信息的海洋里。
不应该处理的错误被处理了,很容易导出BUG暴露不出来,直到出现更严重错误的时候才暴露出问题,到时候排查就很困难了,因为已经不是错误的第一现场。
所以错误和异常最好能按一定的规则进行分类和管理,在第一时间能暴露错误和还原现场。
对于错误处理,Erlang有一个很好的概念叫速错,就是有错误第一时间暴露它。我们的项目从Erlang到Go一直是沿用这一设计原则。但是应用这个原则的前提是先得区分错误和异常这两个概念。
错误和异常上面已经提到了,从语言机制层面比较容易区分它们,但是语言取决于人为,什么情况下用错误表达,什么情况下用异常表达,就得有一套规则,否则很容易出现全部靠异常来做错误处理的情况,似乎Java项目特别容易出现这样的设计。
这里我先假想有这样一个业务:游戏玩家通过购买按钮,用铜钱购买宝石。
在实现这个业务的时候,程序逻辑会进一步分化成客户端逻辑和服务端逻辑,客户端逻辑又进一步因为设计方式的不同分化成两种结构:胖客户端结构、瘦客户端结构。
胖客户端结构,有更多的本地数据和懂得更多的业务逻辑,所以在胖客户端结构的应用中,以上的业务会实现成这样:客户端检查缓存中的铜钱数量,铜钱数量足够的时候购买按钮为可用的亮起状态,用户点击购买按钮后客户端发送购买请求到服务端;服务端收到请求后校验用户的铜钱数量,如果铜钱数量不足就抛出异常,终止请求过程并断开客户端的连接,如果铜钱数量足够就进一步完成宝石购买过程,这里不继续描述正常过程。
因为正常的客户端是有一步数据校验的过程的,所以当服务端收到不合理的请求(铜钱不足以购买宝石)时,抛出异常比返回错误更为合理,因为这个请求只可能来自两种客户端:外挂或者有BUG的客户端。如果不通过抛出异常来终止业务过程和断开客户端连接,那么程序的错误就很难被第一时间发现,攻击行为也很难被发现。
我们再回头看瘦客户端结构的设计,瘦客户端不会存有太多状态数据和用户数据也不清楚业务逻辑,所以客户端的设计会是这样:用户点击购买按钮,客户端发送购买请求;服务端收到请求后检查铜钱数量,数量不足就返回数量不足的错误码,数量足够就继续完成业务并返回成功信息;客户端收到服务端的处理结果后,在界面上做出反映。
在这种结构下,铜钱不足就变成了业务逻辑范围内的一种失败情况,但不能提升为异常,否则铜钱不足的用户一点购买按钮都会出错掉线。
所以,异常和错误在不同程序结构下是互相转换的,我们没办法一句话的给所有类型所有结构的程序一个统一的异常和错误分类规则。
但是,异常和错误的分类是有迹可循的。比如上面提到的痩客户端结构,铜钱不足是业务逻辑范围内的一种失败情况,它属于业务错误,再比如程序逻辑上尝试请求某个URL,最多三次,重试三次的过程中请求失败是错误,重试到第三次,失败就被提升为异常了。
所以我们可以这样来归类异常和错误:不会终止程序逻辑运行的归类为错误,会终止程序逻辑运行的归类为异常。
因为错误不会终止逻辑运行,所以错误是逻辑的一部分,比如上面提到的瘦客户端结构,铜钱不足的错误就是业务逻辑处理过程中需要考虑和处理的一个逻辑分支。而异常就是那些不应该出现在业务逻辑中的东西,比如上面提到的胖客户端结构,铜钱不足已经不是业务逻辑需要考虑的一部分了,所以它应该是一个异常。
错误和异常的分类需要通过一定的思维训练来强化分类能力,就类似于面向对象的设计方式一样的,技术实现就摆在那边,但是要用好需要不断的思维训练不断的归类和总结,以上提到的归类方式希望可以作为一个参考,期待大家能发现更多更有效的归类方式。
接下来我们讲一下速错和Go语言里面怎么做到速错。
速错我最早接触是在做的时候就体验到的,当然跟Erlang的速错不完全一致,那时候也没有那么高大上的一个名字,但是对待异常的理念是一样的。
在.NET项目开发的时候,有经验的程序员都应该知道,不能随便re-throw,就是catch错误再抛出,原因是异常的第一现场会被破坏,堆栈跟踪信息会丢失,因为外部最后拿到异常的堆栈跟踪信息,是最后那次throw的异常的堆栈跟踪信息;其次,不能随便try catch,随便catch很容易导出异常暴露不出来,升级为更严重的业务漏洞。
到了Erlang时期,大家学到了速错概念,简单来讲就是:让它挂。只有挂了你才会第一时间知道错误,但是Erlang的挂,只是Erlang进程的异常退出,不会导致整个Erlang节点退出,所以它挂的影响层面比较低。
在Go语言项目中,虽然有类似Erlang进程的Goroutine,但是Goroutine如果panic了,并且没有recover,那么整个Go进程就会异常退出。所以我们在Go语言项目中要应用速错的设计理念,就要对Goroutine做一定的管理。
在我们的游戏服务端项目中,我把Goroutine按挂掉后的结果分为两类:1、挂掉后不影响其他业务或功能的;2、挂掉后业务就无法正常进行的。
第一类Goroutine典型的有:处理各个玩家请求的Goroutine,因为每个玩家连接各自有一个Goroutine,所以挂掉了只会影响单个玩家,不会影响整体业务进行。
第二类Goroutine典型的有:数据库同步用的Goroutine,如果它挂了,数据就无法同步到数据库,游戏如果继续运行下去只会导致数据回档,还不如让整个游戏都异常退出。
这样一分类,就可以比较清楚哪些Goroutine该做recover处理,哪些不该做recover处理了。
那么在做recover处理时,要怎样才能尽量保留第一现场来帮组开发者排查问题原因呢?我们项目中通常是会在最外层的recover中把错误和堆栈跟踪信息记进日志,同时把关键的业务信息,比如:用户ID、来源IP、请求数据等也一起记录进去。
为此,我们还特地设计了一个库,用来格式化输出堆栈跟踪信息和对象信息,项目地址:funny/debug · GitHub
通篇写下来发现比我预期的长很多,所以这里我做一下归纳总结,帮组大家理解这篇文章所要表达的:
错误和异常需要分类和管理,不能一概而论
错误和异常的分类可以以是否终止业务过程作为标准
错误是业务过程的一部分,异常不是
不要随便捕获异常,更不要随便捕获再重新抛出异常
Go语言项目需要把Goroutine分为两类,区别处理异常
在捕获到异常时,需要尽可能的保留第一现场的关键数据
以上仅为一家之言,抛砖引玉,希望对大家有所帮助。
参考:
Goroutine并发调度模型深度解析手撸一个协程池
Golang 的 goroutine 是如何实现的?
Golang - 调度剖析【第二部分】
OS线程初始栈为2MB。Go语言中,每个goroutine采用动态扩容方式,初始2KB,按需增长,最大1G。此外GC会收缩栈空间。
BTW,增长扩容都是有代价的,需要copy数据到新的stack,所以初始2KB可能有些性能问题。
更多关于stack的内容,可以参见大佬的文章。 聊一聊goroutine stack
用户线程的调度以及生命周期管理都是用户层面,Go语言自己实现的,不借助OS系统调用,减少系统资源消耗。
Go语言采用两级线程模型,即用户线程与内核线程KSE(kernel scheduling entity)是M:N的。最终goroutine还是会交给OS线程执行,但是需要一个中介,提供上下文。这就是G-M-P模型
Go调度器有两个不同的运行队列:
go1.10\src\runtime\runtime2.go
Go调度器根据事件进行上下文切换。
调度的目的就是防止M堵塞,空闲,系统进程切换。
详见 Golang - 调度剖析【第二部分】
Linux可以通过epoll实现网络调用,统称网络轮询器N(Net Poller)。
文件IO操作
上面都是防止M堵塞,任务窃取是防止M空闲
每个M都有一个特殊的G,g0。用于执行调度,gc,栈管理等任务,所以g0的栈称为调度栈。g0的栈不会自动增长,不会被gc,来自os线程的栈。
go1.10\src\runtime\proc.go
G没办法自己运行,必须通过M运行
M通过通过调度,执行G
从M挂载P的runq中找到G,执行G
Go语言由Google公司开发,并于2009年开源,相比Java/Python/C等语言,Go尤其擅长并发编程,性能堪比C语言,开发效率肩比Python,被誉为“21世纪的C语言”。
Go语言在云计算、大数据、微服务、高并发领域应用应用非常广泛。BAT大厂正在把Go作为新项目开发的首选语言。
Go语言能干什么?
1、服务端开发:以前你使用C或者C++做的那些事情,用Go来做很合适,例如日志处理、文件系统、监控系统等;
2、DevOps:运维生态中的Docker、K8s、prometheus、grafana、open-falcon等都是使用Go语言开发;
3、网络编程:大量优秀的Web框架如Echo、Gin、Iris、beego等,而且Go内置的 net/http包十分的优秀;
4、Paas云平台领域:Kubernetes和Docker Swarm等;
5、分布式存储领域:etcd、Groupcache、TiDB、Cockroachdb、Influxdb等;
6、区块链领域:区块链里面有两个明星项目以太坊和fabric都使用Go语言;
7、容器虚拟化:大名鼎鼎的Docker就是使用Go语言实现的;
8、爬虫及大数据:Go语言天生支持并发,所以十分适合编写分布式爬虫及大数据处理。
部署简单。Go 编译生成的是一个静态可执行文件,除了 glibc 外没有其他外部依赖。这让部署变得异常方便:目标机器上只需要一个基础的系统和必要的管理、监控工具,完全不需要操心应用所需的各种包、库的依赖关系,大大减轻了维护的负担。这和 Python 有着巨大的区别。由于历史的原因,Python 的部署工具生态相当混乱【比如 setuptools, distutils, pip, buildout 的不同适用场合以及兼容性问题】。官方 PyPI 源又经常出问题,需要搭建私有镜像,而维护这个镜像又要花费不少时间和精力。
并发性好。Goroutine 和 channel 使得编写高并发的服务端软件变得相当容易,很多情况下完全不需要考虑锁机制以及由此带来的各种问题。单个 Go 应用也能有效的利用多个 CPU 核,并行执行的性能好。这和 Python 也是天壤之比。多线程和多进程的服务端程序编写起来并不简单,而且由于全局锁 GIL 的原因,多线程的 Python 程序并不能有效利用多核,只能用多进程的方式部署;如果用标准库里的 multiprocessing 包又会对监控和管理造成不少的挑战【我们用的 supervisor 管理进程,对 fork 支持不好】。部署 Python 应用的时候通常是每个 CPU 核部署一个应用,这会造成不少资源的浪费,比如假设某个 Python 应用启动后需要占用 100MB 内存,而服务器有 32 个 CPU 核,那么留一个核给系统、运行 31 个应用副本就要浪费 3GB 的内存资源。
良好的语言设计。从学术的角度讲 Go 语言其实非常平庸,不支持许多高级的语言特性;但从工程的角度讲,Go 的设计是非常优秀的:规范足够简单灵活,有其他语言基础的程序员都能迅速上手。更重要的是 Go 自带完善的工具链,大大提高了团队协作的一致性。比如 gofmt 自动排版 Go 代码,很大程度上杜绝了不同人写的代码排版风格不一致的问题。把编辑器配置成在编辑存档的时候自动运行 gofmt,这样在编写代码的时候可以随意摆放位置,存档的时候自动变成正确排版的代码。此外还有 gofix, govet 等非常有用的工具。
执行性能好。虽然不如 C 和 Java,但通常比原生 Python 应用还是高一个数量级的,适合编写一些瓶颈业务。内存占用也非常省。
这个似乎不是那么容易解答的,首先你要把数据从mongodb查出来,你要确保已经安装了go语言的mongodb驱动。然后对查出来的数据进行解析,查出来的数据是类似json的数据,这个解析代码需要相关的库或者你自己写的。然后再把数据相应的插入mysql里,这里你也要安装go语言的mysql驱动和odbc