大橙子网站建设,新征程启航

为企业提供网站建设、域名注册、服务器等服务

go语言实践 go语言实践 pdf

Go语言实践模式 - 函数选项模式(Functional Options Pattern)

大家好,我是小白,有点黑的那个白。

罗平网站建设公司成都创新互联公司,罗平网站设计制作,有大型网站制作公司丰富经验。已为罗平上1000家提供企业网站建设服务。企业网站搭建\外贸营销网站建设要多少钱,请找那个售后服务好的罗平做网站的公司定做!

最近遇到一个问题,因为业务需求,需要对接第三方平台.

而三方平台提供的一些HTTP(S)接口都有统一的密钥生成规则要求.

为此我们封装了一个独立的包 xxx-go-sdk 以便维护和对接使用.

其中核心的部分是自定义HTTP Client,如下:

一些平台会要求appKey/appSecret等信息,所以Client结构体就变成了这样,这时参数还比较少, 而且是必填的参数,我们可以提供构造函数来明确指定。

看起来很满足,但是当我们需要增加一个 Timeout 参数来控制超时呢?

或许你会说这还不简单,像下面一样再加一个参数呗

那再加些其他的参数呢?那构造函数的参数是不是又长又串,而且每个参数不一定是必须的,有些参数我们又会考虑默认值的问题。

为此,勤劳但尚未致富的 gophers 们使用了总结一种实践模式

首先提取所有需要的参数到一个独立的结构体 Options,当然你也可以用 Configs 啥的.

然后为每个参数提供设置函数

这样我们就为每个参数设置了独立的设置函数。返回值 func(*Options) 看着有点不友好,我们提取下定义为单个 Option 调整一下代码

当我们需要添加更多的参数时,只需要在 Options 添加新的参数并添加新参数的设置函数即可。

比如现在要添加新的参数 Timeout

这样后续不管新增多少参数,只需要新增配置项并添加独立的设置函数即可轻松扩展,并且不会影响原有函数的参数顺序和个数位置等。

至此,每个选项是区分开来了,那么怎么作用到我们的 Client 结构体上呢?

首先,配置选项都被提取到了 Options 结构体重,所以我们需要调整一下 Client 结构体的参数

其次,每一个选项函数返回 Option,那么任意多个就是 ...Option,我们调整一下构造函数 NewClient 的参数形式,改为可变参数,不再局限于固定顺序的几个参数。

然后循环遍历每个选项函数,来生成Client结构体的完整配置选项。

那么怎么调用呢?对于调用方而已,直接在调用构造函数NewClient()的参数内添加自己需要的设置函数(WithXXX)即可

当需要设置超时参数,直接添加 WithTimeout即可,比如设置3秒的超时

配置选项的位置可以任意设置,不需要受常规的固定参数顺序约束。

可以看到,这种实践模式主要作用于配置选项,利用函数支持的特性来实现的,为此得名 Functional Options Pattern,优美的中国话叫做「函数选项模式」。

最后, 我们总结回顾一下在Go语言中函数选项模式的优缺点

非对称加密之ECC椭圆曲线(go语言实践)

椭圆曲线密码学(英语:Elliptic curve cryptography,缩写为 ECC),一种建立公开密钥加密的算法,基于椭圆曲线数学。椭圆曲线在密码学中的使用是在1985年由Neal Koblitz和Victor Miller分别独立提出的。

ECC的主要优势是在某些情况下它比其他的方法使用更小的密钥——比如RSA加密算法——提供相当的或更高等级的安全。

椭圆曲线密码学的许多形式有稍微的不同,所有的都依赖于被广泛承认的解决椭圆曲线离散对数问题的 困难性上。与传统的基于大质数因子分解困难性的加密方法不同,ECC通过椭圆曲线方程式的性质产生密钥。

ECC 164位的密钥产生的一个安全级相当于RSA 1024位密钥提供的保密强度,而且计算量较小,处理速度 更快,存储空间和传输带宽占用较少。目前我国 居民二代身份证 正在使用 256 位的椭圆曲线密码,虚拟 货币 比特币 也选择ECC作为加密算法。

具体算法详解参考:

单向散列函数(go语言实践)

单向散列函数(one-wayfunction)有一个输入和一个输出,其中输入称为消息(message),输出称为散列值 (hashvalue)。单向散列函数可以根据消息的内容计算出散列值,而散列值就可以被用来检查消息的完整性。

这里的消息不一定是人类能够读懂的文字,也可以是图像文件或者声音文件。单向散列函数不需要知道消息实

际代表的含义。无论任何消息,单向散列函数都会将它作为单纯的比特序列来处理,即根据比特序列计算出散

列值。

散列值的长度和消息的长度无关。无论消息是1比特,还是100MB,甚至是IOOGB,单向散列函数都会计算出固 定长度的散列值。以SHA-I单向散列函数为例,它所计算出的散列值的长度永远是160比特(20字节)。

单向散列函数的相关术语有很多变体,不同参考资料中所使用的术语也不同,下面我们就介绍其中的儿个。 单向散列函数也称为 消息摘要函数(message digest function) 、 哈希函数 或者 杂凑函数 。 输入单向散列函数的消息也称为 原像 (pre-image) 。

单向散列函数输出的散列值也称为 消息摘要 (message digest)或者 指纹 (fingerprint)。 完整性 也称为一致性。

MD4是由Rivest于1990年设计的单向散列函数,能够产生128比特的散列值(RFC1186,修订版RFC1320)。不 过,随着Dobbertin提出寻找MD4散列碰撞的方法,因此现在它已经不安全了。

MD5是由Rwest于1991年设计的单项散列函数,能够产生128比特的散列值(RFC1321)。

MD5的强抗碰撞性已经被攻破,也就是说,现在已经能够产生具备相同散列值的两条不同的消息,因此它也已

经不安全了。

MD4和MD5中的MD是消息摘要(Message Digest)的缩写。

SHA-1是由NIST(NationalInstituteOfStandardsandTechnology,美国国家标准技术研究所)设计的一种能够产生 160比特的散列值的单向散列函数。1993年被作为美国联邦信息处理标准规格(FIPS PUB 180)发布的是 SHA,1995年发布的修订版FIPS PUB 180-1称为SHA-1。

SHA-1的消息长度存在上限,但这个值接近于2^64比特,是个非常巨大的数值,因此在实际应用中没有问题。

SHA-256、SHA-384和SHA-512都是由NIST设计的单向散列函数,它们的散列值长度分别为256比特、384比特和

512比特。这些单向散列函数合起来统称SHA-2,它们的消息长度也存在上限(SHA-256的上限接近于 2^64 比特,

SHA-384 和 SHA-512的上限接近于 2^128 比特)。这些单向散列函数是于2002年和 SHA-1 一起作为 FIPS PUB 180-2 发布的 SHA-1 的强抗碰撞性已于2005年被攻破, 也就是说,现在已经能够产生具备相同散列值的两条不同的消 息。不过,SHA-2还尚未被攻破。


新闻名称:go语言实践 go语言实践 pdf
当前URL:http://dzwzjz.com/article/higgio.html
在线咨询
服务热线
服务热线:028-86922220
TOP