大橙子网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
join主要用于基于索引的横向合并拼接;
公司主营业务:做网站、成都网站建设、移动网站开发等业务。帮助企业客户真正实现互联网宣传,提高企业的竞争能力。成都创新互联公司是一支青春激扬、勤奋敬业、活力青春激扬、勤奋敬业、活力澎湃、和谐高效的团队。公司秉承以“开放、自由、严谨、自律”为核心的企业文化,感谢他们对我们的高要求,感谢他们从不同领域给我们带来的挑战,让我们激情的团队有机会用头脑与智慧不断的给客户带来惊喜。成都创新互联公司推出临县免费做网站回馈大家。
merge主要用于基于指定列的横向合并拼接;
concat可用于横向和纵向合并拼接;
append主要用于纵向追加;
combine可以通过使用函数,把两个DataFrame按列进行组合。
join
join是基于索引的横向拼接,如果索引一致,直接横向拼接。如果索引不一致,则会用Nan值填充merge是基于指定列的横向拼接,该函数类似于关系型数据库的连接方式,可以根据一个或多个键将不同的DatFrame连接起来。该函数的典型应用场景是,针对同一个主键存在两张不同字段的表,根据主键整合到一张表里面。
可以指定不同的how参数,表示连接方式,有inner内连、left左连、right右连、outer全连,默认为inner;
有, 要用apply函数。一种方式:
def my_test(a, b):
return a + b
df['value'] = df.apply(lambda row: my_test(row['A'], row['B']), axis=1)
apply完了产生一列新的series。注意axis=1 不能漏了 ,表示apply的方向是纵向
给个代码示例吧:
a=[1,2,3]
b=[4,5,6]
c=a[:]
c=c+b
#此时列表c的内容是a与b合并后的内容
如果是原地合并,即把a与b的内容合并到a,则代码如下:
a=[1,2,3]
b=[4,5,6]
a.extend(b)
#此时列表a的内容是a与b合并后的内容
append 方法根据行在原数据框添加新的数据框。
如果想要合并后的数据框索引重写排序,可以设置参数 ignore_index=True 。
concat 函数是panda自带的,可以按行或按列合并多个pandas数据框。
按行合并多个数据框,需要注意的是 objs参数接受一个可迭代对象 。concat函数默认按行合并。
设置 ignore_index=True ,使合并后的数据框索引重新排序。
按行合并时,concat对所有的列进行全连接(参数 join='outer' ),没有的列会填充为NaN。
设置参数 join='inner' ,可以只保留共有的列。
设置参数 axis=1 或 axis='columns' ,可以按列合并多个数据框。
merge 方法根据列或索引连接数据框。
当两个数据框只有一个相同列时, merge 方法会自动根据相同列进行内连接, on 参数可以省略。
设置参数 how=['left','right','outer','inner','cross'] ,可以完成不同类型的连接。
当两个数据框没有相同列时,需要设置 left_on 和 right_on 参数,表示按这两列进行连接。
如果需要根据数据框的索引进行连接,需要根据需求设置参数 left_index=True 或者 right_index=True 。
设置 suffixes ,可以给相同的列名添加后缀。默认后缀是 _x , _y 。
join 方法与 merge 方法作用相同,基本上 merge 方法已经可以完成所有的连接操作。
join 方法对按索引连接更方便而已。
当连接的两个数据框中没有相同列时,可以直接按索引进行左连接。
同样,可以设置 how 参数,控制连接的行为。
当数据框中有相同列时,需要设置后缀。
首先导入列表中的数组,再对每一列进行检测若发现相同的数字就用0来填充,在按列求和,生成一个新的数组再合并到原来数组的下面,生成一个新的列表:
import
pandas
as
pd
a=pd.readflie(
"XXX.csv")
//XXX.csv为你的列表生成的数组文件的路径
for
i
in
a[i]:
//循环找出重复的数据并以0替换
for
j
in
a[i,j]:
if
a[i,j]==a[i,j+1]
a[i,j+1]=0
for
k
in
a[k,n]:
for
n
in
a[k,n]:
a[k,n]+=a[k,n]
a[k,n+1]=a[k,n]/n
//求平均值
这段代码复制到pycharn就可以直接运行了,打字不易,求理解