大橙子网站建设,新征程启航

为企业提供网站建设、域名注册、服务器等服务

go语言的管道和等待组的简单介绍

GO语言(二十七):管理依赖项(下)-

当您对外部模块的存储库进行了 fork (例如修复模块代码中的问题或添加功能)时,您可以让 Go 工具将您的 fork 用于模块的源代码。这对于测试您自己的代码的更改很有用。

成都创新互联公司成都企业网站建设服务,提供成都网站建设、网站设计网站开发,网站定制,建网站,网站搭建,网站设计,响应式网站开发,网页设计师打造企业风格网站,提供周到的售前咨询和贴心的售后服务。欢迎咨询做网站需要多少钱:18982081108

为此,您可以使用go.mod 文件中的replace指令将外部模块的原始模块路径替换为存储库中 fork 的路径。这指示 Go 工具在编译时使用替换路径(fork 的位置),例如,同时允许您保留import 原始模块路径中的语句不变。

在以下 go.mod 文件示例中,当前模块需要外部模块example.com/theirmodule。然后该replace指令将原始模块路径替换为example.com/myfork/theirmodule模块自己的存储库的分支。

设置require/replace对时,使用 Go 工具命令确保文件描述的需求保持一致。使用go list命令获取当前模块正在使用的版本。然后使用go mod edit命令将需要的模块替换为fork:

注意: 当您使用该replace指令时,Go 工具不会像添加依赖项中所述对外部模块进行身份验证。

您可以使用go get命令从其存储库中的特定提交为模块添加未发布的代码。

为此,您使用go get命令,用符号@指定您想要的代码 。当您使用go get时,该命令将向您的 go.mod 文件添加一个 需要外部模块的require指令,使用基于有关提交的详细信息的伪版本号。

以下示例提供了一些说明。这些基于源位于 git 存储库中的模块。

当您的代码不再使用模块中的任何包时,您可以停止将该模块作为依赖项进行跟踪。

要停止跟踪所有未使用的模块,请运行go mod tidy 命令。此命令还可能添加在模块中构建包所需的缺失依赖项。

要删除特定依赖项,请使用go get,指定模块的模块路径并附加 @none,如下例所示:

go get命令还将降级或删除依赖于已删除模块的其他依赖项。

当您使用 Go 工具处理模块时,这些工具默认从 proxy.golang.org(一个公共的 Google 运行的模块镜像)或直接从模块的存储库下载模块。您可以指定 Go 工具应该使用另一个代理服务器来下载和验证模块。

如果您(或您的团队)已经设置或选择了您想要使用的不同模块代理服务器,您可能想要这样做。例如,有些人设置了模块代理服务器,以便更好地控制依赖项的使用方式。

要为 Go 工具指定另一个模块代理服务器,请将GOPROXY 环境变量设置为一个或多个服务器的 URL。Go 工具将按照您指定的顺序尝试每个 URL。默认情况下,GOPROXY首先指定一个公共的 Google 运行模块代理,然后从模块的存储库直接下载(在其模块路径中指定):

您可以将变量设置为其他模块代理服务器的 URL,用逗号或管道分隔 URL。

Go 模块经常在公共互联网上不可用的版本控制服务器和模块代理上开发和分发。您可以设置 GOPRIVATE环境变量。您可以设置GOPRIVATE环境变量来配置go命令以从私有源下载和构建模块。然后 go 命令可以从私有源下载和构建模块。

GOPRIVATE或环境变量可以设置为匹配模块前缀的全局模式列表,这些GONOPROXY前缀是私有的,不应从任何代理请求。例如:

Go CSP并发模型

Go的CSP并发模型

Go实现了两种并发形式。第一种是大家普遍认知的:多线程共享内存。其实就是Java或者C++等语言中的多线程开发。另外一种是Go语言特有的,也是Go语言推荐的:CSP(communicating sequential processes)并发模型。

CSP 是 Communicating Sequential Process 的简称,中文可以叫做通信顺序进程,是一种并发编程模型,由 Tony Hoare 于 1977 年提出。简单来说,CSP 模型由并发执行的实体(线程或者进程)所组成,实体之间通过发送消息进行通信,这里发送消息时使用的就是通道,或者叫 channel。CSP 模型的关键是关注 channel,而不关注发送消息的实体。 Go 语言实现了 CSP 部分理论 。

“ 不要以共享内存的方式来通信,相反, 要通过通信来共享内存。”

Go的CSP并发模型,是通过 goroutine和channel 来实现的。

goroutine 是Go语言中并发的执行单位。其实就是协程。

channel是Go语言中各个并发结构体(goroutine)之前的通信机制。 通俗的讲,就是各个goroutine之间通信的”管道“,有点类似于Linux中的管道。

Channel

Goroutine

golang - channel

通过var声明或者make函数创建的channel变量是一个存储在函数栈帧上的指针,占用8个字节,指向堆上的hchan结构体

源码包中src/runtime/chan.go定义了hchan的数据结构如下:

hchan结构体的主要组成部分有四个:

用来保存goroutine之间传递数据的循环数组:buf

用来记录此循环数组当前发送或接收数据的下标值:sendx和recvx

用于保存向该chan发送和从该chan接收数据被阻塞的goroutine队列: sendq 和 recvq

保证channel写入和读取数据时线程安全的锁:lock

环形数组作为channel 的缓冲区 数组的长度就是定义channnel 时channel 的缓冲大小

在hchan 中包括了读/写 等待队列, waitq是一个双向队列,包括了一个头结点和尾节点。 每个节点是一个sudog结构体变量

channel有2种类型:无缓冲、有缓冲, 在创建时 make(chan type cap) 通过cap 设定缓冲大小

channel有3种模式:写操作模式(单向通道)、读操作模式(单向通道)、读写操作模式(双向通道)

channel有3种状态:未初始化、正常、关闭

如下几种状态会引发panic

channel 是线程安全的,channel的底层实现中,hchan结构体中采用Mutex锁来保证数据读写安全。在对循环数组buf中的数据进行入队和出队操作时,必须先获取互斥锁,才能操作channel数据

【golang详解】go语言GMP(GPM)原理和调度

Goroutine调度是一个很复杂的机制,下面尝试用简单的语言描述一下Goroutine调度机制,想要对其有更深入的了解可以去研读一下源码。

首先介绍一下GMP什么意思:

G ----------- goroutine: 即Go协程,每个go关键字都会创建一个协程。

M ---------- thread内核级线程,所有的G都要放在M上才能运行。

P ----------- processor处理器,调度G到M上,其维护了一个队列,存储了所有需要它来调度的G。

Goroutine 调度器P和 OS 调度器是通过 M 结合起来的,每个 M 都代表了 1 个内核线程,OS 调度器负责把内核线程分配到 CPU 的核上执行

模型图:

避免频繁的创建、销毁线程,而是对线程的复用。

1)work stealing机制

当本线程无可运行的G时,尝试从其他线程绑定的P偷取G,而不是销毁线程。

2)hand off机制

当本线程M0因为G0进行系统调用阻塞时,线程释放绑定的P,把P转移给其他空闲的线程执行。进而某个空闲的M1获取P,继续执行P队列中剩下的G。而M0由于陷入系统调用而进被阻塞,M1接替M0的工作,只要P不空闲,就可以保证充分利用CPU。M1的来源有可能是M的缓存池,也可能是新建的。当G0系统调用结束后,根据M0是否能获取到P,将会将G0做不同的处理:

如果有空闲的P,则获取一个P,继续执行G0。

如果没有空闲的P,则将G0放入全局队列,等待被其他的P调度。然后M0将进入缓存池睡眠。

如下图

GOMAXPROCS设置P的数量,最多有GOMAXPROCS个线程分布在多个CPU上同时运行

在Go中一个goroutine最多占用CPU 10ms,防止其他goroutine被饿死。

具体可以去看另一篇文章

【Golang详解】go语言调度机制 抢占式调度

当创建一个新的G之后优先加入本地队列,如果本地队列满了,会将本地队列的G移动到全局队列里面,当M执行work stealing从其他P偷不到G时,它可以从全局G队列获取G。

协程经历过程

我们创建一个协程 go func()经历过程如下图:

说明:

这里有两个存储G的队列,一个是局部调度器P的本地队列、一个是全局G队列。新创建的G会先保存在P的本地队列中,如果P的本地队列已经满了就会保存在全局的队列中;处理器本地队列是一个使用数组构成的环形链表,它最多可以存储 256 个待执行任务。

G只能运行在M中,一个M必须持有一个P,M与P是1:1的关系。M会从P的本地队列弹出一个可执行状态的G来执行,如果P的本地队列为空,就会想其他的MP组合偷取一个可执行的G来执行;

一个M调度G执行的过程是一个循环机制;会一直从本地队列或全局队列中获取G

上面说到P的个数默认等于CPU核数,每个M必须持有一个P才可以执行G,一般情况下M的个数会略大于P的个数,这多出来的M将会在G产生系统调用时发挥作用。类似线程池,Go也提供一个M的池子,需要时从池子中获取,用完放回池子,不够用时就再创建一个。

work-stealing调度算法:当M执行完了当前P的本地队列队列里的所有G后,P也不会就这么在那躺尸啥都不干,它会先尝试从全局队列队列寻找G来执行,如果全局队列为空,它会随机挑选另外一个P,从它的队列里中拿走一半的G到自己的队列中执行。

如果一切正常,调度器会以上述的那种方式顺畅地运行,但这个世界没这么美好,总有意外发生,以下分析goroutine在两种例外情况下的行为。

Go runtime会在下面的goroutine被阻塞的情况下运行另外一个goroutine:

用户态阻塞/唤醒

当goroutine因为channel操作或者network I/O而阻塞时(实际上golang已经用netpoller实现了goroutine网络I/O阻塞不会导致M被阻塞,仅阻塞G,这里仅仅是举个栗子),对应的G会被放置到某个wait队列(如channel的waitq),该G的状态由_Gruning变为_Gwaitting,而M会跳过该G尝试获取并执行下一个G,如果此时没有可运行的G供M运行,那么M将解绑P,并进入sleep状态;当阻塞的G被另一端的G2唤醒时(比如channel的可读/写通知),G被标记为,尝试加入G2所在P的runnext(runnext是线程下一个需要执行的 Goroutine。), 然后再是P的本地队列和全局队列。

系统调用阻塞

当M执行某一个G时候如果发生了阻塞操作,M会阻塞,如果当前有一些G在执行,调度器会把这个线程M从P中摘除,然后再创建一个新的操作系统的线程(如果有空闲的线程可用就复用空闲线程)来服务于这个P。当M系统调用结束时候,这个G会尝试获取一个空闲的P执行,并放入到这个P的本地队列。如果获取不到P,那么这个线程M变成休眠状态, 加入到空闲线程中,然后这个G会被放入全局队列中。

队列轮转

可见每个P维护着一个包含G的队列,不考虑G进入系统调用或IO操作的情况下,P周期性的将G调度到M中执行,执行一小段时间,将上下文保存下来,然后将G放到队列尾部,然后从队列中重新取出一个G进行调度。

除了每个P维护的G队列以外,还有一个全局的队列,每个P会周期性地查看全局队列中是否有G待运行并将其调度到M中执行,全局队列中G的来源,主要有从系统调用中恢复的G。之所以P会周期性地查看全局队列,也是为了防止全局队列中的G被饿死。

除了每个P维护的G队列以外,还有一个全局的队列,每个P会周期性地查看全局队列中是否有G待运行并将其调度到M中执行,全局队列中G的来源,主要有从系统调用中恢复的G。之所以P会周期性地查看全局队列,也是为了防止全局队列中的G被饿死。

M0

M0是启动程序后的编号为0的主线程,这个M对应的实例会在全局变量rutime.m0中,不需要在heap上分配,M0负责执行初始化操作和启动第一个G,在之后M0就和其他的M一样了

G0

G0是每次启动一个M都会第一个创建的goroutine,G0仅用于负责调度G,G0不指向任何可执行的函数,每个M都会有一个自己的G0,在调度或系统调用时会使用G0的栈空间,全局变量的G0是M0的G0

一个G由于调度被中断,此后如何恢复?

中断的时候将寄存器里的栈信息,保存到自己的G对象里面。当再次轮到自己执行时,将自己保存的栈信息复制到寄存器里面,这样就接着上次之后运行了。

我这里只是根据自己的理解进行了简单的介绍,想要详细了解有关GMP的底层原理可以去看Go调度器 G-P-M 模型的设计者的文档或直接看源码

参考: ()

()


分享标题:go语言的管道和等待组的简单介绍
转载注明:http://dzwzjz.com/article/hiseph.html
在线咨询
服务热线
服务热线:028-86922220
TOP