大橙子网站建设,新征程启航

为企业提供网站建设、域名注册、服务器等服务

python中的差值函数 python差分方程

求python的list的差值

要完全避免for,连列表表达式中使用for都不可以的话,主要就靠functools的reduce了。

成都创新互联公司成立于2013年,我们提供高端成都网站建设公司成都网站制作成都网站设计、网站定制、营销型网站建设成都小程序开发、微信公众号开发、seo优化排名服务,提供专业营销思路、内容策划、视觉设计、程序开发来完成项目落地,为封阳台企业提供源源不断的流量和订单咨询。

因为在排除for之后,简单直接的办法中,只有reduce是可以处理列表中连续两个元素的。

当然,也可以不用reduce,使用map也是可以的:

至于做成方法,定义一个基于list的类后也差不多:

Python基础 numpy中的常见函数有哪些

有些Python小白对numpy中的常见函数不太了解,今天小编就整理出来分享给大家。

Numpy是Python的一个科学计算的库,提供了矩阵运算的功能,其一般与Scipy、matplotlib一起使用。其实,list已经提供了类似于矩阵的表示形式,不过numpy为我们提供了更多的函数。

数组常用函数

1.where()按条件返回数组的索引值

2.take(a,index)从数组a中按照索引index取值

3.linspace(a,b,N)返回一个在(a,b)范围内均匀分布的数组,元素个数为N个

4.a.fill()将数组的所有元素以指定的值填充

5.diff(a)返回数组a相邻元素的差值构成的数组

6.sign(a)返回数组a的每个元素的正负符号

7.piecewise(a,[condlist],[funclist])数组a根据布尔型条件condlist返回对应元素结果

8.a.argmax(),a.argmin()返回a最大、最小元素的索引

改变数组维度

a.ravel(),a.flatten():将数组a展平成一维数组

a.shape=(m,n),a.reshape(m,n):将数组a转换成m*n维数组

a.transpose,a.T转置数组a

数组组合

1.hstack((a,b)),concatenate((a,b),axis=1)将数组a,b沿水平方向组合

2.vstack((a,b)),concatenate((a,b),axis=0)将数组a,b沿竖直方向组合

3.row_stack((a,b))将数组a,b按行方向组合

4.column_stack((a,b))将数组a,b按列方向组合

数组分割

1.split(a,n,axis=0),vsplit(a,n)将数组a沿垂直方向分割成n个数组

2.split(a,n,axis=1),hsplit(a,n)将数组a沿水平方向分割成n个数组

数组修剪和压缩

1.a.clip(m,n)设置数组a的范围为(m,n),数组中大于n的元素设定为n,小于m的元素设定为m

2.a.compress()返回根据给定条件筛选后的数组

数组属性

1.a.dtype数组a的数据类型

2.a.shape数组a的维度

3.a.ndim数组a的维数

4.a.size数组a所含元素的总个数

5.a.itemsize数组a的元素在内存中所占的字节数

6.a.nbytes整个数组a所占的内存空间7.a.astype(int)转换a数组的类型为int型

数组计算

1.average(a,weights=v)对数组a以权重v进行加权平均

2.mean(a),max(a),min(a),middle(a),var(a),std(a)数组a的均值、最大值、最小值、中位数、方差、标准差

3.a.prod()数组a的所有元素的乘积

4.a.cumprod()数组a的元素的累积乘积

5.cov(a,b),corrcoef(a,b)数组a和b的协方差、相关系数

6.a.diagonal()查看矩阵a对角线上的元素7.a.trace()计算矩阵a的迹,即对角线元素之和

以上就是numpy中的常见函数。更多Python学习推荐:PyThon学习网教学中心。

Python如何使用sd()函数求数据的标准差

python的求

标准差

的函数是std,是numpy库的成员,

如果非要

用sd函数求标准差,也不是不行(from

numpy

import

std

as

sd)。其参数是所需求标准差的矩阵或列表,

返回值

即标准差。示范如下:

import

numpy

as

np;

from

numpy

import

std

as

sd;

print([1,

2,3],"的标准差是);

print(sd([1,2,3]));


分享文章:python中的差值函数 python差分方程
本文链接:http://dzwzjz.com/article/hjcipe.html
在线咨询
服务热线
服务热线:028-86922220
TOP