大橙子网站建设,新征程启航

为企业提供网站建设、域名注册、服务器等服务

关于基于nosql消息中间件的信息

网易传媒技术团队:消息中间件实现延迟队列的应用与实践

早期需要延迟处理的业务场景,更多的是通过定时任务扫表,然后执行满足条件的记录,具有频率高、命中低、资源消耗大的缺点。随着消息中间件的普及,延迟消息可以很好的处理这种场景,本文主要介绍延迟消息的使用场景以及基于常见的消息中间件如何实现延迟队列,最后给出了一个在网易公开课使用延迟队列的实践。

创新互联专注于阿里地区网站建设服务及定制,我们拥有丰富的企业做网站经验。 热诚为您提供阿里地区营销型网站建设,阿里地区网站制作、阿里地区网页设计、阿里地区网站官网定制、成都小程序开发服务,打造阿里地区网络公司原创品牌,更为您提供阿里地区网站排名全网营销落地服务。

1、有效期:限时活动、拼团。。。

2、超时处理:取消超时未支付订单、超时自动确认收货。。。

4、重试:网络异常重试、打车派单、依赖条件未满足重试。。。

5、定时任务:智能设备定时启动。。。

1、RabbitMQ

1)简介:基于AMQP协议,使用Erlang编写,实现了一个Broker框架

a、Broker:接收和分发消息的代理服务器

b、Virtual Host:虚拟主机之间相互隔离,可理解为一个虚拟主机对应一个消息服务

c、Exchange:交换机,消息发送到指定虚拟机的交换机上

d、Binding:交换机与队列绑定,并通过路由策略和routingKey将消息投递到一个或多个队列中

e、Queue:存放消息的队列,FIFO,可持久化

f、Channel:信道,消费者通过信道消费消息,一个TCP连接上可同时创建成百上千个信道,作为消息隔离

2)延迟队列实现:RabbitMQ的延迟队列基于消息的存活时间TTL(Time To Live)和死信交换机DLE(Dead Letter Exchanges)实现

a、TTL:RabbitMQ支持对队列和消息各自设置存活时间,取二者中较小的值,即队列无消费者连接或消息在队列中一直未被消费的过期时间

b、DLE:过期的消息通过绑定的死信交换机,路由到指定的死信队列,消费者实际上消费的是死信队列上的消息

3)缺点:

a、配置麻烦,额外增加一个死信交换机和一个死信队列的配置

b、脆弱性,配置错误或者生产者消费者连接的队列错误都有可能造成延迟失效

2、RocketMQ

1)简介:来源于阿里,目前为Apache顶级开源项目,使用Java编写,基于长轮询的拉取方式,支持事务消息,并解决了顺序消息和海量堆积的问题

a、Broker:存放Topic并根据读取Producer的提交日志,将逻辑上的一个Topic分多个Queue存储,每个Queue上存储消息在提交日志上的位置

b、Name Server:无状态的节点,维护Topic与Broker的对应关系以及Broker的主从关系

2)延迟队列实现:RocketMQ发送延时消息时先把消息按照延迟时间段发送到指定的队列中(rocketmq把每种延迟时间段的消息都存放到同一个队列中),然后通过一个定时器进行轮训这些队列,查看消息是否到期,如果到期就把这个消息发送到指定topic的队列中

3)缺点:延迟时间粒度受限制(1s/5s/10s/30s/1m/2m/3m/4m/5m/6m/7m/8m/9m/10m/20m/30m/1h/2h)

3、Kafka

1)简介:来源于Linkedin,目前为Apache顶级开源项目,使用Scala和Java编写,基于zookeeper协调的分布式、流处理的日志系统,升级版为Jafka

2)延迟队列实现:Kafka支持延时生产、延时拉取、延时删除等,其基于时间轮和JDK的DelayQueue实现

a、时间轮(TimingWheel):是一个存储定时任务的环形队列,底层采用数组实现,数组中的每个元素可以存放一个定时任务列表

b、定时任务列表(TimerTaskList):是一个环形的双向链表,链表中的每一项表示的都是定时任务项

c、定时任务项(TimerTaskEntry):封装了真正的定时任务TimerTask

d、层级时间轮:当任务的到期时间超过了当前时间轮所表示的时间范围时,就会尝试添加到上层时间轮中,类似于钟表就是一个三级时间轮

e、JDK DelayQueue:存储TimerTaskList,并根据其expiration来推进时间轮的时间,每推进一次除执行相应任务列表外,层级时间轮也会进行相应调整

3)缺点:

a、延迟精度取决于时间格设置

b、延迟任务除由超时触发还可能被外部事件触发而执行

4、ActiveMQ

1)简介:基于JMS协议,Java编写的Apache顶级开源项目,支持点对点和发布订阅两种模式。

a、点对点(point-to-point):消息发送到指定的队列,每条消息只有一个消费者能够消费,基于拉模型

b、发布订阅(publish/subscribe):消息发送到主题Topic上,每条消息会被订阅该Topic的所有消费者各自消费,基于推模型

2)延迟队列实现:需要延迟的消息会先存储在JobStore中,通过异步线程任务JobScheduler将到达投递时间的消息投递到相应队列上

a、Broker Filter:Broker中定义了一系列BrokerFilter的子类构成拦截器链,按顺序对消息进行相应处理

b、ScheduleBroker:当消息中指定了延迟相关属性,并且jobId为空时,会生成调度任务存储到JobStore中,此时消息不会进入到队列

c、JobStore:基于BTree存储,key为任务执行的时间戳,value为该时间戳下需要执行的任务列表

d、JobScheduler:取JobStore中最小的key执行(调度时间最早的),执行时间=当前时间,将该任务列表依次投递到所属的队列,对于需要重复投递和投递失败的会再次存入JobStore中。

注: 此处JobScheduler的执行时间间隔可动态变化,默认0.5s,有新任务时会立即执行(Object-notifyAll())并设置时间间隔为0.1s,没有新任务后,下次执行时间为最近任务的调度执行时间。

3)缺点:投递到队列失败,将消息重新存入JobStore,消息调度执行时间=系统当前时间+延迟时间,会导致消息被真实投递的时间可能为设置的延迟时间的整数倍

5、Redis

1)简介:基于Key-Value的NoSQL数据库,由于其极高的性能常被当作缓存来使用,其数据结构支持:字符串、哈希、列表、集合、有序集合

2)延迟队列实现:Redis的延迟队列基于有序集合,score为执行时间戳,value为任务实体或任务实体引用

3)缺点:

a、实现复杂,本身不支持

b、完全基于内存,延迟时间长浪费内存资源

6、消息队列对比

1、公开课延迟队列技术选型

1)业务场景:关闭超时未支付订单、限时优惠活动、拼团

2)性能要求:订单、活动、拼团 数据量可控,上述MQ均能满足要求

3)可靠性:使用ActiveMQ、RabbitMQ、RocketMQ作为延迟队列更普遍

4)可用性:ActiveMQ、RocketMQ自身支持延迟队列功能,且目前公开课业务中使用的中间件为ActiveMQ和Kafka

5)延迟时间灵活:活动的开始和结束时间比较灵活,而RocketMQ时间粒度较粗,Kafka会依赖时间格有精度缺失

结论: 最终选择ActiveMQ来作为延迟队列

2、业务场景:关闭未支付订单

1)关闭微信未支付订单

2)关闭IOS未支付订单

3、ActiveMQ使用方式

1)activemq.xml中支持调度任务

2)发送消息时,设置message的延迟属性

其中:

a、延迟处理

AMQ_SCHEDULED_DELAY:设置多长时间后,投递给消费者(毫秒)

b、重复投递

AMQ_SCHEDULED_PERIOD:重复投递时间间隔(毫秒)

AMQ_SCHEDULED_REPEAT:重复投递次数

c、指定调度计划

AMQ_SCHEDULED_CRON:corn正则表达式

4、公开课使用中进行的优化

1)可靠性:针对实际投递时间可能翻倍的问题,结合ActiveMQ的重复投递,在消费者逻辑中做幂等处理来保证延迟时间的准确性

2)可追溯性:延迟消息及消费情况做数据库冗余存储

3)易用性:业务上定义好延迟枚举类型,直接使用JmsDelayTemplate发送,无需关心数据备份和参数等细节

1、无论是基于死信队列还是基于数据先存储后投递,本质上都是将延迟待发送的消息数据与正常订阅的队列分开存储,从而降低耦合度

2、无论是检查队头消息TTL还是调度存储的延迟数据,本质上都是通过定时任务来完成的,但是定时任务的触发策略以及延迟数据的存储方式决定了不同中间件之间的性能优劣

张浩,2018年加入网易传媒,高级Java开发工程师,目前在网易公开课主要做支付财务体系、版本迭代相关的工作。

大数据具体是学习什么内容呢?主要框架是什么?

首先,学习大数据是需要有java,python和R语言的基础。

1) Java学习到什么样的程度才可以学习大数据呢?

java需要学会javaSE即可。javaweb,javaee对于大数据用不到。学会了javase就可以看懂hadoop框架。

2) python是最容易学习的,难易程度:python java Scala 。

python不是比java更直观好理解么,因为会了Python 还是要学习java的,你学会了java,再来学习python会很简单的,一周的时间就可以学会python。

3) R语言也可以学习,但是不推荐,因为java用的人最多,大数据的第一个框架Hadoop,底层全是Java写的。就算学会了R还是看不懂hadoop。

java在大数据中的作用是构成大数据的语言,大数据的第一个框架Hadoop以及其他大数据技术框架,底层语言全是Java写的,所以推荐首选学习java

大数据开发学习路线:

第一阶段:Hadoop生态架构技术

1、语言基础

Java:多理解和实践在Java虚拟机的内存管理、以及多线程、线程池、设计模式、并行化就可以,不需要深入掌握。

Linux:系统安装、基本命令、网络配置、Vim编辑器、进程管理、Shell脚本、虚拟机的菜单熟悉等等。

Python:基础语法,数据结构,函数,条件判断,循环等基础知识。

2、环境准备

这里介绍在windows电脑搭建完全分布式,1主2从。

VMware虚拟机、Linux系统(Centos6.5)、Hadoop安装包,这里准备好Hadoop完全分布式集群环境。

3、MapReduce

MapReduce分布式离线计算框架,是Hadoop核心编程模型。

4、HDFS1.0/2.0

HDFS能提供高吞吐量的数据访问,适合大规模数据集上的应用。

5、Yarn(Hadoop2.0)

Yarn是一个资源调度平台,主要负责给任务分配资源。

6、Hive

Hive是一个数据仓库,所有的数据都是存储在HDFS上的。使用Hive主要是写Hql。

7、Spark

Spark 是专为大规模数据处理而设计的快速通用的计算引擎。

8、SparkStreaming

Spark Streaming是实时处理框架,数据是一批一批的处理。

9、SparkHive

Spark作为Hive的计算引擎,将Hive的查询作为Spark的任务提交到Spark集群上进行计算,可以提高Hive查询的性能。

10、Storm

Storm是一个实时计算框架,Storm是对实时新增的每一条数据进行处理,是一条一条的处理,可以保证数据处理的时效性。

11、Zookeeper

Zookeeper是很多大数据框架的基础,是集群的管理者。

12、Hbase

Hbase是一个Nosql数据库,是高可靠、面向列的、可伸缩的、分布式的数据库。

13、Kafka

kafka是一个消息中间件,作为一个中间缓冲层。

14、Flume

Flume常见的就是采集应用产生的日志文件中的数据,一般有两个流程。

一个是Flume采集数据存储到Kafka中,方便Storm或者SparkStreaming进行实时处理。

另一个流程是Flume采集的数据存储到HDFS上,为了后期使用hadoop或者spark进行离线处理。

第二阶段:数据挖掘算法

1、中文分词

开源分词库的离线和在线应用

2、自然语言处理

文本相关性算法

3、推荐算法

基于CB、CF,归一法,Mahout应用。

4、分类算法

NB、SVM

5、回归算法

LR、DecisionTree

6、聚类算法

层次聚类、Kmeans

7、神经网络与深度学习

NN、Tensorflow

以上就是学习Hadoop开发的一个详细路线,如果需要了解具体框架的开发技术,可咨询加米谷大数据老师,详细了解。

学习大数据开发需要掌握哪些技术呢?

(1)Java语言基础

Java开发介绍、熟悉Eclipse开发工具、Java语言基础、Java流程控制、Java字符串、Java数组与类和对象、数字处理类与核心技术、I/O与反射、多线程、Swing程序与集合类

(2)HTML、CSS与Java

PC端网站布局、HTML5+CSS3基础、WebApp页面布局、原生Java交互功能开发、Ajax异步交互、jQuery应用

(3)JavaWeb和数据库

数据库、JavaWeb开发核心、JavaWeb开发内幕

LinuxHadoop生态体系

Linux体系、Hadoop离线计算大纲、分布式数据库Hbase、数据仓库Hive、数据迁移工具Sqoop、Flume分布式日志框架

分布式计算框架和SparkStrom生态体系

(1)分布式计算框架

Python编程语言、Scala编程语言、Spark大数据处理、Spark—Streaming大数据处理、Spark—Mlib机器学习、Spark—GraphX 图计算、实战一:基于Spark的推荐系统(某一线公司真实项目)、实战二:新浪网()

(2)storm技术架构体系

Storm原理与基础、消息队列kafka、Redis工具、zookeeper详解、大数据项目实战数据获取、数据处理、数据分析、数据展现、数据应用

大数据分析—AI(人工智能)Data

Analyze工作环境准备数据分析基础、数据可视化、Python机器学习

以上的回答希望对你有所帮助

消息中间件(一)MQ详解及四大MQ比较

一、消息中间件相关知识

1、概述

消息队列已经逐渐成为企业IT系统内部通信的核心手段。它具有低耦合、可靠投递、广播、流量控制、最终一致性等一系列功能,成为异步RPC的主要手段之一。当今市面上有很多主流的消息中间件,如老牌的ActiveMQ、RabbitMQ,炙手可热的Kafka,阿里巴巴自主开发RocketMQ等。

2、消息中间件的组成

2.1 Broker

消息服务器,作为server提供消息核心服务

2.2 Producer

消息生产者,业务的发起方,负责生产消息传输给broker,

2.3 Consumer

消息消费者,业务的处理方,负责从broker获取消息并进行业务逻辑处理

2.4 Topic

2.5 Queue

2.6 Message

消息体,根据不同通信协议定义的固定格式进行编码的数据包,来封装业务数据,实现消息的传输

3 消息中间件模式分类

3.1 点对点

PTP点对点:使用queue作为通信载体

说明:

消息生产者生产消息发送到queue中,然后消息消费者从queue中取出并且消费消息。

消息被消费以后,queue中不再存储,所以消息消费者不可能消费到已经被消费的消息。 Queue支持存在多个消费者,但是对一个消息而言,只会有一个消费者可以消费。

说明:

queue实现了负载均衡,将producer生产的消息发送到消息队列中,由多个消费者消费。但一个消息只能被一个消费者接受,当没有消费者可用时,这个消息会被保存直到有一个可用的消费者。

4 消息中间件的优势

4.1 系统解耦

交互系统之间没有直接的调用关系,只是通过消息传输,故系统侵入性不强,耦合度低。

4.2 提高系统响应时间

例如原来的一套逻辑,完成支付可能涉及先修改订单状态、计算会员积分、通知物流配送几个逻辑才能完成;通过MQ架构设计,就可将紧急重要(需要立刻响应)的业务放到该调用方法中,响应要求不高的使用消息队列,放到MQ队列中,供消费者处理。

4.3 为大数据处理架构提供服务

通过消息作为整合,大数据的背景下,消息队列还与实时处理架构整合,为数据处理提供性能支持。

4.4 Java消息服务——JMS

Java消息服务(Java Message Service,JMS)应用程序接口是一个Java平台中关于面向消息中间件(MOM)的API,用于在两个应用程序之间,或分布式系统中发送消息,进行异步通信。

5 消息中间件应用场景

5.1 异步通信

有些业务不想也不需要立即处理消息。消息队列提供了异步处理机制,允许用户把一个消息放入队列,但并不立即处理它。想向队列中放入多少消息就放多少,然后在需要的时候再去处理它们。

5.2 解耦

降低工程间的强依赖程度,针对异构系统进行适配。在项目启动之初来预测将来项目会碰到什么需求,是极其困难的。通过消息系统在处理过程中间插入了一个隐含的、基于数据的接口层,两边的处理过程都要实现这一接口,当应用发生变化时,可以独立的扩展或修改两边的处理过程,只要确保它们遵守同样的接口约束。

5.3 冗余

有些情况下,处理数据的过程会失败。除非数据被持久化,否则将造成丢失。消息队列把数据进行持久化直到它们已经被完全处理,通过这一方式规避了数据丢失风险。许多消息队列所采用的”插入-获取-删除”范式中,在把一个消息从队列中删除之前,需要你的处理系统明确的指出该消息已经被处理完毕,从而确保你的数据被安全的保存直到你使用完毕。

5.4 扩展性

因为消息队列解耦了你的处理过程,所以增大消息入队和处理的频率是很容易的,只要另外增加处理过程即可。不需要改变代码、不需要调节参数。便于分布式扩容。

5.5 过载保护

在访问量剧增的情况下,应用仍然需要继续发挥作用,但是这样的突发流量无法提取预知;如果以为了能处理这类瞬间峰值访问为标准来投入资源随时待命无疑是巨大的浪费。使用消息队列能够使关键组件顶住突发的访问压力,而不会因为突发的超负荷的请求而完全崩溃。

5.6 可恢复性

系统的一部分组件失效时,不会影响到整个系统。消息队列降低了进程间的耦合度,所以即使一个处理消息的进程挂掉,加入队列中的消息仍然可以在系统恢复后被处理。

5.7 顺序保证

在大多使用场景下,数据处理的顺序都很重要。大部分消息队列本来就是排序的,并且能保证数据会按照特定的顺序来处理。

5.8 缓冲

在任何重要的系统中,都会有需要不同的处理时间的元素。消息队列通过一个缓冲层来帮助任务最高效率的执行,该缓冲有助于控制和优化数据流经过系统的速度。以调节系统响应时间。

5.9 数据流处理

分布式系统产生的海量数据流,如:业务日志、监控数据、用户行为等,针对这些数据流进行实时或批量采集汇总,然后进行大数据分析是当前互联网的必备技术,通过消息队列完成此类数据收集是最好的选择。

6 消息中间件常用协议

6.1 AMQP协议

AMQP即Advanced Message Queuing Protocol,一个提供统一消息服务的应用层标准高级消息队列协议,是应用层协议的一个开放标准,为面向消息的中间件设计。基于此协议的客户端与消息中间件可传递消息,并不受客户端/中间件不同产品,不同开发语言等条件的限制。

优点:可靠、通用

6.2 MQTT协议

MQTT(Message Queuing Telemetry Transport,消息队列遥测传输)是IBM开发的一个即时通讯协议,有可能成为物联网的重要组成部分。该协议支持所有平台,几乎可以把所有联网物品和外部连接起来,被用来当做传感器和致动器(比如通过Twitter让房屋联网)的通信协议。

优点:格式简洁、占用带宽小、移动端通信、PUSH、嵌入式系统

6.3 STOMP协议

STOMP(Streaming Text Orientated Message Protocol)是流文本定向消息协议,是一种为MOM(Message Oriented Middleware,面向消息的中间件)设计的简单文本协议。STOMP提供一个可互操作的连接格式,允许客户端与任意STOMP消息代理(Broker)进行交互。

优点:命令模式(非topic\queue模式)

6.4 XMPP协议

XMPP(可扩展消息处理现场协议,Extensible Messaging and Presence Protocol)是基于可扩展标记语言(XML)的协议,多用于即时消息(IM)以及在线现场探测。适用于服务器之间的准即时操作。核心是基于XML流传输,这个协议可能最终允许因特网用户向因特网上的其他任何人发送即时消息,即使其操作系统和浏览器不同。

优点:通用公开、兼容性强、可扩展、安全性高,但XML编码格式占用带宽大

6.5 其他基于TCP/IP自定义的协议

有些特殊框架(如:redis、kafka、zeroMq等)根据自身需要未严格遵循MQ规范,而是基于TCP\IP自行封装了一套协议,通过网络socket接口进行传输,实现了MQ的功能。

7 常见消息中间件MQ介绍

7.1 RocketMQ

阿里系下开源的一款分布式、队列模型的消息中间件,原名Metaq,3.0版本名称改为RocketMQ,是阿里参照kafka设计思想使用java实现的一套mq。同时将阿里系内部多款mq产品(Notify、metaq)进行整合,只维护核心功能,去除了所有其他运行时依赖,保证核心功能最简化,在此基础上配合阿里上述其他开源产品实现不同场景下mq的架构,目前主要多用于订单交易系统。

具有以下特点:

官方提供了一些不同于kafka的对比差异:

7.2 RabbitMQ

使用Erlang编写的一个开源的消息队列,本身支持很多的协议:AMQP,XMPP, SMTP,STOMP,也正是如此,使的它变的非常重量级,更适合于企业级的开发。同时实现了Broker架构,核心思想是生产者不会将消息直接发送给队列,消息在发送给客户端时先在中心队列排队。对路由(Routing),负载均衡(Load balance)、数据持久化都有很好的支持。多用于进行企业级的ESB整合。

7.3 ActiveMQ

Apache下的一个子项目。使用Java完全支持JMS1.1和J2EE 1.4规范的 JMS Provider实现,少量代码就可以高效地实现高级应用场景。可插拔的传输协议支持,比如:in-VM, TCP, SSL, NIO, UDP, multicast, JGroups and JXTA transports。RabbitMQ、ZeroMQ、ActiveMQ均支持常用的多种语言客户端 C++、Java、.Net,、Python、 Php、 Ruby等。

7.4 Redis

使用C语言开发的一个Key-Value的NoSQL数据库,开发维护很活跃,虽然它是一个Key-Value数据库存储系统,但它本身支持MQ功能,所以完全可以当做一个轻量级的队列服务来使用。对于RabbitMQ和Redis的入队和出队操作,各执行100万次,每10万次记录一次执行时间。测试数据分为128Bytes、512Bytes、1K和10K四个不同大小的数据。实验表明:入队时,当数据比较小时Redis的性能要高于RabbitMQ,而如果数据大小超过了10K,Redis则慢的无法忍受;出队时,无论数据大小,Redis都表现出非常好的性能,而RabbitMQ的出队性能则远低于Redis。

7.5 Kafka

Apache下的一个子项目,使用scala实现的一个高性能分布式Publish/Subscribe消息队列系统,具有以下特性:

7.6 ZeroMQ

号称最快的消息队列系统,专门为高吞吐量/低延迟的场景开发,在金融界的应用中经常使用,偏重于实时数据通信场景。ZMQ能够实现RabbitMQ不擅长的高级/复杂的队列,但是开发人员需要自己组合多种技术框架,开发成本高。因此ZeroMQ具有一个独特的非中间件的模式,更像一个socket library,你不需要安装和运行一个消息服务器或中间件,因为你的应用程序本身就是使用ZeroMQ API完成逻辑服务的角色。但是ZeroMQ仅提供非持久性的队列,如果down机,数据将会丢失。如:Twitter的Storm中使用ZeroMQ作为数据流的传输。

ZeroMQ套接字是与传输层无关的:ZeroMQ套接字对所有传输层协议定义了统一的API接口。默认支持 进程内(inproc) ,进程间(IPC) ,多播,TCP协议,在不同的协议之间切换只要简单的改变连接字符串的前缀。可以在任何时候以最小的代价从进程间的本地通信切换到分布式下的TCP通信。ZeroMQ在背后处理连接建立,断开和重连逻辑。

特性:

二、主要消息中间件的比较


网站题目:关于基于nosql消息中间件的信息
标题来源:http://dzwzjz.com/article/hohjci.html
在线咨询
服务热线
服务热线:028-86922220
TOP