大橙子网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
前段时间在golang-China读到这个贴:
鄯善网站制作公司哪家好,找成都创新互联公司!从网页设计、网站建设、微信开发、APP开发、成都响应式网站建设公司等网站项目制作,到程序开发,运营维护。成都创新互联公司于2013年开始到现在10年的时间,我们拥有了丰富的建站经验和运维经验,来保证我们的工作的顺利进行。专注于网站建设就选成都创新互联公司。
个人觉得golang十分适合进行网游服务器端开发,写下这篇文章总结一下。
从网游的角度看:
要成功的运营一款网游,很大程度上依赖于玩家自发形成的社区。只有玩家自发形成一个稳定的生态系统,游戏才能持续下去,避免鬼城的出现。而这就需要多次大量导入用户,在同时在线用户量达到某个临界点的时候,才有可能完成。因此,多人同时在线十分有必要。
再来看网游的常见玩法,除了排行榜这类统计和数据汇总的功能外,基本没有需要大量CPU时间的应用。以前的项目里,即时战斗产生的各种伤害计算对CPU的消耗也不大。玩家要完成一次操作,需要通过客户端-服务器端-客户端这样一个来回,为了获得高响应速度,满足玩家体验,服务器端的处理也不能占用太多时间。所以,每次请求对应的CPU占用是比较小的。
网游的IO主要分两个方面,一个是网络IO,一个是磁盘IO。网络IO方面,可以分成美术资源的IO和游戏逻辑指令的IO,这里主要分析游戏逻辑的IO。游戏逻辑的IO跟CPU占用的情况相似,每次请求的字节数很小,但由于多人同时在线,因此并发数相当高。另外,地图信息的广播也会带来比较频繁的网络通信。磁盘IO方面,主要是游戏数据的保存。采用不同的数据库,会有比较大的区别。以前的项目里,就经历了从MySQL转向MongoDB这种内存数据库的过程,磁盘IO不再是瓶颈。总体来说,还是用内存做一级缓冲,避免大量小数据块读写的方案。
针对网游的这些特点,golang的语言特性十分适合开发游戏服务器端。
首先,go语言提供goroutine机制作为原生的并发机制。每个goroutine所需的内存很少,实际应用中可以启动大量的goroutine对并发连接进行响应。goroutine与gevent中的greenlet很相像,遇到IO阻塞的时候,调度器就会自动切换到另一个goroutine执行,保证CPU不会因为IO而发生等待。而goroutine与gevent相比,没有了python底层的GIL限制,就不需要利用多进程来榨取多核机器的性能了。通过设置最大线程数,可以控制go所启动的线程,每个线程执行一个goroutine,让CPU满负载运行。
同时,go语言为goroutine提供了独到的通信机制channel。channel发生读写的时候,也会挂起当前操作channel的goroutine,是一种同步阻塞通信。这样既达到了通信的目的,又实现同步,用CSP模型的观点看,并发模型就是通过一组进程和进程间的事件触发解决任务的。虽然说,主流的编程语言之间,只要是图灵完备的,他们就都能实现相同的功能。但go语言提供的这种协程间通信机制,十分优雅地揭示了协程通信的本质,避免了以往锁的显式使用带给程序员的心理负担,确是一大优势。进行网游开发的程序员,可以将游戏逻辑按照单线程阻塞式的写,不需要额外考虑线程调度的问题,以及线程间数据依赖的问题。因为,线程间的channel通信,已经表达了线程间的数据依赖关系了,而go的调度器会给予妥善的处理。
另外,go语言提供的gc机制,以及对指针的保护式使用,可以大大减轻程序员的开发压力,提高开发效率。
展望未来,我期待go语言社区能够提供更多的goroutine间的隔离机制。个人十分推崇erlang社区的脆崩哲学,推动应用发生预期外行为时,尽早崩溃,再fork出新进程处理新的请求。对于协程机制,需要由程序员保证执行的函数不会发生死循环,导致线程卡死。如果能够定制goroutine所执行函数的最大CPU执行时间,及所能使用的最大内存空间,对于提升系统的鲁棒性,大有裨益。
第一步,创建性能监视器对象:
PerformanceCounter _oPerformanceCounter=new PerformanceCounter("Processor","% Processor Time","_Total");
第二步,获取CPU使用情况:
float _nVal=_oPerformanceCounter.NextValue();
_nVal中就是当前CPU的使用率了,加上百分号(%)就是使用率的百分比,比如:
string _s="当前CPU使用率:" + nVal.ToString("0.0") + "%";
Process [] pro;
pro = Process.GetProcesses();
int total=0;
Process temp;
int i;
for(i=0;ipro.Length ;i++)
{
temp =pro[i];
total=temp.PrivateMemorySize +total ;
}
获得内存的占用大小
1. 部署简单
Go
编译生成的是一个静态可执行文件,除了glibc外没有其他外部依赖。这让部署变得异常方便:目标机器上只需要一个基础的系统和必要的管理、监控工具,完全不需要操心应用所需的各种包、库的依赖关系,大大减轻了维护的负担。
2. 并发性好
Goroutine和channel使得编写高并发的服务端软件变得相当容易,很多情况下完全不需要考虑锁机制以及由此带来的各种问题。单个Go应用也能有效的利用多个CPU核,并行执行的性能好。
3. 良好的语言设计
从学术的角度讲Go语言其实非常平庸,不支持许多高级的语言特性;但从工程的角度讲,Go的设计是非常优秀的:规范足够简单灵活,有其他语言基础的程序员都能迅速上手。更重要的是
Go 自带完善的工具链,大大提高了团队协作的一致性。
4. 执行性能好
虽然不如 C 和 Java,但相比于其他编程语言,其执行性能还是很好的,适合编写一些瓶颈业务,内存占用也非常省。
参照的是 这个文章
首先自己写一段demo
里面负责2件事
doSomeThingOne
genSomeBytes
运行这个程序go run main.go
To install thewrk,you need only:
git clone
cd wrk
make
wrk relies on the openssl and luajit, learn more from its github page
Generating requests
Our demo is listening on the port 9876 ,so let's generate some requests for that.
./wrk -c400 -t8 -d5m
-c400means we have 400 connections to keep open
-t8means we use 8 threads to build requests
-d5mmeans the duration of the test will last for 5 minutes
用这段命令来压服务器
Our server is very busy now and we can see some information via browser. Inputlocalhost:9876/debug/pprofyou will see:
然后用命令进入
在这里能看见各种方法的运行时间
所以我们安装Graphviz 在mac下
brew install graphviz
之后再这个(pprof)里面输入web
会生产一个svg文件
用浏览器打开我们就会看到
很显然gensomebytes里面的math方法最消耗时间。这个就是我们优化的对象
其实也很方便在
localhost:9876/debug/pprof/profile改成
localhost:9876/debug/pprof/heap
后面的结果一样。。和cpu一样可以看到那个heap占用了大量的内存到时候优化吧
这个文章里面的第一个方法就可以做测试内存占用的.
有空试试把
分布式程序 A B C D 4个进程在服务器. 监控程序E 打包程序F
写一个监控程序定时监控这4个进程的CPU 内存(搞成配置文件)
达到性能瓶颈(例如 90%CPU 内存剩下10%) E用shell触发打包程序F把pprof等信息打包.并发送邮件
给配置者.
内核线程(Kernel-Level Thread ,KLT)
轻量级进程(Light Weight Process,LWP):轻量级进程就是我们通常意义上所讲的线程,由于每个轻量级进程都由一个内核线程支持,因此只有先支持内核线程,才能有轻量级进程
用户线程与系统线程一一对应,用户线程执行如lo操作的系统调用时,来回切换操作开销相对比较大
多个用户线程对应一个内核线程,当内核线程对应的一个用户线程被阻塞挂起时候,其他用户线程也阻塞不能执行了。
多对多模型是可以充分利用多核CPU提升运行效能的
go线程模型包含三个概念:内核线程(M),goroutine(G),G的上下文环境(P);
GMP模型是goalng特有的。
P与M一般是一一对应的。P(上下文)管理着一组G(goroutine)挂载在M(内核线程)上运行,图中左边蓝色为正在执行状态的goroutine,右边为待执行状态的goroutiine队列。P的数量由环境变量GOMAXPROCS的值或程序运行runtime.GOMAXPROCS()进行设置。
当一个os线程在执行M1一个G1发生阻塞时,调度器让M1抛弃P,等待G1返回,然后另起一个M2接收P来执行剩下的goroutine队列(G2、G3...),这是golang调度器厉害的地方,可以保证有足够的线程来运行剩下所有的goroutine。
当G1结束后,M1会重新拿回P来完成,如果拿不到就丢到全局runqueue中,然后自己放到线程池或转入休眠状态。空闲的上下文P会周期性的检查全局runqueue上的goroutine,并且执行它。
另一种情况就是当有些P1太闲而其他P2很忙碌的时候,会从其他上下文P2拿一些G来执行。
详细可以翻看下方第一个参考链接,写得真好。
最后用大佬的总结来做最后的收尾————
Go语言运行时,通过核心元素G,M,P 和 自己的调度器,实现了自己的并发线程模型。调度器通过对G,M,P的调度实现了两级线程模型中操作系统内核之外的调度任务。整个调度过程中会在多种时机去触发最核心的步骤 “一整轮调度”,而一整轮调度中最关键的部分在“全力查找可运行G”,它保证了M的高效运行(换句话说就是充分使用了计算机的物理资源),一整轮调度中还会涉及到M的启用停止。最后别忘了,还有一个与Go程序生命周期相同的系统监测任务来进行一些辅助性的工作。
浅析Golang的线程模型与调度器
Golang CSP并发模型
Golang线程模型
是。单核CPU的发展的停滞,给多核CPU的发展带来了机遇,Golang能使用多核cpu,Go(又称Golang)是Google开发的一种静态强类型、编译型、并发型,并具有垃圾回收功能的编程语言。