大橙子网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
Flutter中Widget分为StatefulWidget和StatelessWidget,分别为动态视图和静态视图,视图的更新需要调用StatefulWidget的setState方法,这会遍历调用子Widget的build方法。当一个主页面比较复杂时,会包含多个widget,如果直接调用setState,会遍历所有子Widget的build,这是非常不必要的性能开销,有没有单独刷新指定Widget的方式呢?这个时候就要用到GlobalKey了。
创新互联建站主要从事成都做网站、网站建设、外贸营销网站建设、网页设计、企业做网站、公司建网站等业务。立足成都服务阿拉尔,10余年网站建设经验,价格优惠、服务专业,欢迎来电咨询建站服务:028-86922220
一个StatefulWidget包含一个Button,一个Text,通过点击Button调用主Widget的setState方法,刷新Text,示例如下:
同样一个StatefulWidget包含一个多个Text和Button,点击Button我们只需要刷新指定的Text,通过GlobalKey的方式,实现如下:
主Widget,包含一个需要更新的TextWidget和一个不需要更新的Text
需要单独更新的Widget
传递事件的Button
这样点击Button就只会更新指定的TextWidget了,效果如下:
这只是一个简单的例子,在实际开发中为了页面刷新的高效率,模块化封装非常重要。很多情况下都只需要局部刷新,而不是重构整个视图。所以Globalkey的运用在项目中需要熟练掌握
Flutter中有两个常用的状态Widget分为StatefulWidget和StatelessWidget,分别为动态视图和静态视图,视图的更新需要调用StatefulWidget的setState方法,这会遍历调用子Widget的build方法。如果一个页面内容比较复杂时,会包含多个widget,如果直接调用setState,会遍历所有子Widget的build,这样会造成很多不必要的开销,所以非常有必要了解Flutter中局部刷新的方式:
globalkey唯一定义了某个element,它使你能够访问与element相关联的其他对象,例如buildContext、state等。应用场景:跨widget访问状态。
例如:可以通过key.currentState拿到它的状态对象,然后就可以调用其中的onPressed方法。
Flutter框架内部提供了一个非常小巧精致的组件,专门用于局部组件的刷新。适用于值改动的刷新。
实现原理:在 initState 中对传入的可监听对象进行监听,执行 _valueChanged 方法,_valueChanged 中进行了 setState 来触发当前状态的刷新。触发 build 方法,从而触发 widget.builder 回调,这样就实现了局部刷新。可以看到这里回调的 child 是组件传入的 child,所以直接使用,这就是对 child 的优化的根源。
可以看到 ValueListenableBuilder 实现局部刷新的本质,也是进行组件的抽离,让组件状态的改变框定在状态内部,并通过 builder 回调控制局部刷新,暴露给用户使用。
通过这个可以创建一个支持局部刷新的widget树,比如你可以在StatelessWidget里面刷新某个布局,但是不需要改变成StatefulWidget;也可以在StatefulWidget中使用做部分刷新而不需要刷新整个页面,这个刷新是不会调用Widget build(BuildContext context)刷新整个布局树的。
异步UI更新:
很多时候我们会依赖一些异步数据来动态更新UI,比如在打开一个页面时我们需要先从互联网上获取数据,在获取数据的过程中显示一个加载框,等获取到数据时我们再渲染页面;又比如我们想展示Stream(比如文件流、互联网数据接收流)的进度。当然StatefulWidget我们完全可以实现以上功能。但由于在实际开发中依赖异步数据更新UI的这种场景非常常见,并且当StatefulWidget中控件树较大时,更新一个属性导致整个树重建,消耗性能,因此Flutter专门提供了FutureBuilder和SteamBuilder两个组件来快速实现这种功能。
通常情况下,子Widget无法单独感知父Widget的变化,当父state变化时,通过其build重建所有子widget;
InheriteddWidget可以避免这种全局创建,实现局部子Widget更新。InheritedWidget提供了一种在Widget树中从上到下传递、共享数据的方式。Flutter SDK正是通过InheritedWidget来共享应用主题和Locale等信息。
InheritedWidgetData
TestData
InheritedTest1Page
provider是Google I/O 2019大会上宣布的现在官方推荐的管理方式,而ChangeNotifierProvider可以说是Provider的一种:
yaml文件需要引入provider: ^3.1.0
顶层嵌套ChangeNotifierProvider
创建共享数据类DataInfo:
数据类需要with ChangeNotifier 以使用 notifyListeners()函数通知监听者更新界面。
使用Provider.of(context)获取DataInfo
nextPage:
使用Consumer包住需要使用共享数据的Widget
RepaintBoundary就是重绘边界,用于重绘时独立于父视图。页面需要更新的页面结构可以用 RepaintBoundary组件嵌套,flutter 会将包含的组件独立出一层"画布",去绘制。官方很多组件 外层也包了层 RepaintBoundary 标签。如果你的自定义view比较复杂,应该尽可能的避免重绘。
以上总结了几种Flutter的局部刷新的方式,可根据实际需要使用不同的方式,最适合的才是最好的。
这种方法最常见,但是有些地方引用的话,刷新的成本比较大,刷新的是整个页面,数据太多加载太慢的话,会有闪烁的现象
这种方法类似于iOS中的set方法,通过设置某个属性的时候,去刷新某个控件。在flutter中这种刷新方式,是对上面setState(){}方法的改进,根本的方法还是setState(){},只不过是通过方法去刷新某个控件。如下:
首先在pubspec.yaml中添加provider依赖
下面通过provider来实现一个发送验证码的案例。
创建一个TimerModel文件
页面布局如下:
本文将从三个方面介绍Android 图形系统。
图形系统提供绘图和图形处理支持。
Android 框架提供了各种用于 2D 和 3D 图形渲染的 API、图片解码库,以及各种Driver支持。
• 绘图API:2D引擎 Skia,3D引擎 OpenGL ES,RenderScript,OpenCV和Vulkan。
• 图片解码库:jpg,png,gif等。
应用开发者可通过三种方式将图像绘制到屏幕:
• Canvas : 2D图形API,Android View树实际的绘制者。
• OpenGL ES : 嵌入式设备的OpenGL 三维图形API子集。
• Vulkan :跨平台的2D和3D绘图引擎,Android 7.0后支持,NDK。
整个图形系统架构是一个生产者和消费者模式,五层依次介绍:
2D绘制:Canvas api / view 的子类 (button ,list)/自定义view
3D绘制:应用直接使用OpenGL 接口绘制图形(PixelFlinger对应的是openGl 1.0 ,GUP driver 对应的是2.0和3.0)
所有情况下的绘图都渲染到一个包含 GraphicBuffer的Surface上,当一块 Surface 显示在屏幕上时,就是用户所看到的窗口。
• Canvas:画布,2D图形API,Android View树实际的渲染者。
• Skia绘制:Android4.0之前默认使用,主线程通过CPU完成绘图指令操作,在复杂场景下单帧容易超过16ms导致卡顿。
WindowManagerService(WMS)窗口管理服务,管理系统中所有的窗口。
• 管理window (view的容器)
• Window与surface对应,一块显示区域。添加一个window,就是 WMS 为其分配一块 Surface 的过程。
Google 在Android source官网提示:
这里就对这些控件进行简单介绍:
Surface : Handle onto a raw buffer that is being managed by the screen compositor.
Surface 对应一块屏幕缓冲区。生产者是: SurfaceTexture、MediaRecorder 等,消费者是: OpenGL、MediaPlayer 或 CameraDevice等。每个window对应一个Surface。Canvas或OpenGL ES等最终都渲染到Surface上。
• Flutter在Android平台上也是直接渲染到Surface。例如:一个Activity/Dialog都是一个Surface,它承载了上层的图形数据,与SurfaceFlinger侧的Layer相对应。
Canvas(画布)实现由 Skia 图形库提供。为了确保两个客户端不会同时更新某个缓冲区,使用以下命令处理画布锁:
使用双缓冲机制,有自己的 surface,View只是一个透明的占位符,Surface可以在后台线程中绘制。双缓冲机制提高渲染效率,独立线程
绘制,提升流畅性。适合一些场景:需要界面迅速更新、UI绘制时间长、对帧率要求较高的情况。
提供访问和控制Surface 相关的方法 。通过SurfaceView的getHolder()函数可以获取SurfaceHolder对象,Surface 就在SurfaceHolder对象内。
addCallback(SurfaceHolder.Callbackcallback) /Canvas lockCanvas() /unlockCanvasAndPost(Canvascanvas)
SurfaceTexture: Surface 和 OpenGL ES (GLES) 纹理(Texture)的组合。将图像流转为 OpenGL 外部纹理。
TextureView:持有 SurfaceTexture,将图像处理为 OpenGL 纹理更新到 HardwareLayer。
GLSurfaceView:加入 EGL 管理,自带 GL 上下文和 GL 渲染线程
这些View通常涉及到Android音视频相关,需要高效的渲染能力。如下面的SurfaceTexture在camera中的应用。
简称Buffer, 一个Buffer包含一帧图像,Buffer由gralloc分配和回收。Buffer 属性包含:width, height, format, usage等
BufferQueue 的引入是为了解决显示和性能问题。
• Surface属于APP进程,Layer属于系统进程,如果它们之间只用一个Buffer,会存在显示和性能问题。
• 一些Buffer用于绘制,一些Buffer用于显示,双方处理完之后,交换一下Buffer,提高效率。
• BufferQueue中包含多个Buffer对象。
Android图形系统包含了两对生产者和消费者模型,它们都通过BufferQueue进行连接:
1.Canvas和OpenGL ES生产图形数据,SurfaceFlinger消费图形数据。
2.SurfaceFlinger合成所有图层的图形数据,Display显示合成结果。
code:frameworks/native/services/surfaceflinger
• Surface表示APP进程的一个窗口,承载了窗口的图形数据。
• SurfaceFlinger是系统进程合成所有窗口的系统服务,负责合成所有Surface提供的图形数据,然后送显到屏幕。
• SurfaceFlinger既是上层应用的消费者,又是Display的生产者,起到了承上启下的作用。
数据流:
合成示意图:
在介绍Vsync机制之前先介绍两个重要概念:
屏幕刷新率:屏幕每秒钟可以刷新多少次。60HZ刷新率,16.7ms刷新一次。(120HZ/8.3ms),硬件指标。
GPU 绘制帧率:GPU 每秒能够合成绘制多少帧。
软件层触发 View 绘制的时机是随机的,当下一次屏幕刷新时,屏幕从 Frame Buffer 中拿到的数据还是“帧1”的数据,导致“丢帧”。
每隔 16ms 硬件层发出 vsync 信号,应用层接收到此信号后会触发UI 的渲染流程,同时 vsync 信号也会触发 SurfaceFlinger 读取Buffer 中的数据,进行合成显示到屏幕上。
总结:Vsync机制将 CPU 和 GPU 的开始时间与屏幕刷新强行拖拽到同一起跑线
Android提供的Graphics流程相对比较复杂对其进行具象后的流程如下两张图所示:
1、界面搭建过程中各种大小单位
Android:通常采用dp设置View宽高(和px像素的换算关系是dp值 × density逻辑密度),sp设置字体大小(会随着系统字体设置的大小而改变)。
Flutter:没有具体的大小单位描述, 和尺寸相关的MediaQueryData类中较为重要的几个值如下:
(一)devicePixelRatio(设备像素比),对应Android中的density
(二)size.width和height,设备的逻辑像素宽高,并非绝对物理像素(例如iphone6的设备像素比是2,通过size获取到的逻辑像素宽高为375 × 667,实际物理像素则为750 × 1334,即分辨率)
(三)textScaleFactor:单位逻辑像素字体像素数,默认为1,设置成1.5则字体变大50%,如果想让Text组件的字体大小不随系统设置的变化而变化,需将这个值设定成固定值1
UI适配解决方案:
1、采用ScreenUtil插件,初始化时候传入设计稿大小,当发现一屏显示的大小有差异时候采用插件提供的setWidth和setHeight来设置具体的宽高(会根据设计稿大小和实际设备逻辑像素宽高比进行缩放)。
2、TextButton、Text等按钮和文本组件,通过设置字体大小和内边距来控制整体的宽高,而非固定其宽高。
2、本地资源文件的引用方式
Android:图片通常存放在res/mipmap或res/drawable下,不同分辨率对应不同后缀名,如mipmap-hdpi、mipmap-xhdpi
Flutter:需在pubspec.yaml中配置,如下图所示
如果只配置父级目录例如(assets/images/common_status)则无法再存放不同尺寸的图片。不同尺寸的图片需建立对应的2.0x、3.0x目录后存放,设备在读取时候会自行根据分辨率去找对应的图片,弊端是每有一张图片就需在pubspec.yaml文件中声明这些图片
目前Flutter平台主流的两个播放器是video_player和fijkplayer
pub
github
1、Flutter平台官方插件,作者是国外的,有问题沟通比较困难,只能通过提交issue
2、硬解码
4、UI封装: better_player
基于video_player和Chewie的高级视频播放器。它解决了许多典型的用例,并且易于运行。
5、播放器宽高比例与视频内容宽高比例不一致时,会出现图像压缩变形的问题
6、调用原生内核播放器:iOS--AVPlayer, Android--ExoPlayer
7、对于分段源 m3u8 的播放不友好,如果一个切片播放超时,会导致整个播放都失败
8、better_player可以缓存视频,但不能自定义缓存的地址,只能指定key,和缓存的最大内存量(还未研究超出最大的话是不能缓存新的,还是删除最旧的)
9、better_player不能完全自定义UI,只能修改类中的一些开放属性,比如说icon图标,文字颜色啥的
10、无网络有缓存时,封面可以正常展示
11、better_player播放失败有手动retry的设计
pub
github
1、fijkplayer 是一个 Flutter 生态的媒体播放器,是对 ijkplayer 的 Flutter 封装,支持 Android 和 iOS。 fijkplayer 使用 ijkplayer 作为播放器内核,ijkplayer 使用 ffmpeg 进行音视频解封装和解码,同时添加了 Android 和 iOS 平台特有的硬件加速解码能力。
2 、国内有QQ群,但是活跃度也是不高。
3、可以缓存视频,可以自定义缓存的地址,方便后续的内存维护。
4、可以通过FijkPanelWidgetBuilder较大程度上自定义UI。
5、无网络有缓存视频时,无法展示封面,因为内部是通过imageProvider去加载网络图片的。
7、播放失败无手动retry的设计
1、两种播放器都是通过外接纹理方案 (Texture),将播放器视频画面渲染接入 flutter 中,性能上优于 PlatformView 的接入方法。
如何自己实现?
下面以video_palyer的iOS源码部分解释:
iOS用CVPixelBufferRef将渲染出来的数据存在内存中,Flutter engine会将Texture的数据在内存中直接进行映射无需通过Channel传输,然后Texture Widget就可以把你提供的这些数据显示出来。在我们传输数据的时候会需要将其与 TextureID 绑定,绑定的过程通过BasicMessageChannel实现数据流的传输,以做到实时展示的效果