大橙子网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
python中log_inner是log表示以e为底数的对数函数符号。
黄陂ssl适用于网站、小程序/APP、API接口等需要进行数据传输应用场景,ssl证书未来市场广阔!成为创新互联的ssl证书销售渠道,可以享受市场价格4-6折优惠!如果有意向欢迎电话联系或者加微信:18982081108(备注:SSL证书合作)期待与您的合作!
在数学运算中,如果没有计算器,对于很大的数字相乘,我们花费大量的时间计算,而且一旦出错,就要重新计算,很是麻烦。其实对于数字相乘,不依靠靠计算器,想要准确简单的运算的方法不是没有,那就是对数和指数,他们解决了大数或非常的小的数相乘的繁琐计算。而在python中,也有计算对数的方法,那就是对数函数log函数。本文将向大家介绍log函数的表述语句、参数和返回值,并以实例演示用log函数计算对数的过程。log()函数:返回 x 的自然对数。即返回以 2 为基数的 x 的对数。
Python由荷兰数学和计算机科学研究学会的吉多·范罗苏姆 于1990 年代初设计,作为一门叫做ABC语言的替代品。Python提供了高效的高级数据结构,还能简单有效地面向对象编程。Python语法和动态类型,以及解释型语言的本质,使它成为多数平台上写脚本和快速开发应用的编程语言,随着版本的不断更新和语言新功能的添加,逐渐被用于独立的、大型项目的开发。Python解释器易于扩展,可以使用C语言或C++(或者其他可以通过C调用的语言)扩展新的功能和数据类型。Python 也可用于可定制化软件中的扩展程序语言。Python丰富的标准库,提供了适用于各个主要系统平台的源码或机器码。
python常见的内置函数有:
1. abs()函数返回数字的绝对值。
2. all() 函数用于判断给定的参数中的所有元素是否都为 TRUE,如果是返回 True,否则返回 False。元素除了是 0、空、None、False 外都算 True;空元组、空列表返回值为True。
3. any() 函数用于判断给定的参数是否全部为False,是则返回False,如果有一个为True,则返回True。 元素除了是 0、空、False外都算 TRUE。
4. bin()函数返回一个整数int或者长整数long int的二进制表示。
5. bool() 函数用于将给定参数转换为布尔类型,如果参数不为空或不为0,返回True;参数为0或没有参数,返回False。
6. bytearray()方法返回一个新字节数组。这个数组里的元素是可变的,并且每个元素的值范围: 0 = x 256(即0-255)。即bytearray()是可修改的二进制字节格式。
7. callable()函数用于检查一个对象是否可调用的。对于函数、方法、lambda函式、类以及实现了 __call__ 方法的类实例, 它都返回 True。(可以加括号的都可以调用)
8. chr()函数用一个范围在range(256)内(即0~255)的整数作参数,返回一个对应的ASCII数值。
9. dict()函数用来将元组/列表转换为字典格式。
10. dir()函数不带参数时,返回当前范围内的变量、方法和定义的类型列表;带参数时,返回参数的属性、方法列表。
扩展资料:
如何查看python3.6的内置函数?
1、首先先打开python自带的集成开发环境IDLE;
2、然后我们直接输入"dir(__builtins__)",需要注意的是builtins左右的下划线都是两个;
3、回车之后我们就可以看到python所有的内置函数;
4、接下来我们学习第二种查看python内置函数的方法,我们直接在IDLE中输入"import builtins",然后输入"dir(builtins)";
5、然后回车,同样的这个方法也可以得到所有的python内置的函数;
6、这里我们可以使用python内置函数len()来查看python内置函数的个数,这里我们直接输入"len(dir(builtins))";
7、回车之后我们可以看到系统返回值153,说明我们现在这个版本中有153个内置函数;
8、最后我们介绍一个比较有用的内置函数"help",python内置函数有一百多个,我们当然不能记住所有的函数,这里python提供了一个"help"函数,我们来看一个例子一起来体会一下help函数的用法,这里我们直接输入"help(len)",然后回车,会看到系统给我们对于内置函数"len"的解释,当然对于其他函数可能会有更加详细的解释以及用法提示。
1)线性归一化
这种归一化比较适用在数值比较集中的情况,缺陷就是如果max和min不稳定,很容易使得归一化结果不稳定,使得后续的效果不稳定,实际使用中可以用经验常量来代替max和min。
2)标准差标准化
经过处理的数据符合标准正态分布,即均值为0,标准差为1。
3)非线性归一化
经常用在数据分化较大的场景,有些数值大,有些很小。通过一些数学函数,将原始值进行映射。该方法包括log、指数、反正切等。需要根据数据分布的情况,决定非线性函数的曲线。
log函数:x = lg(x)/lg(max)
反正切函数:x = atan(x)*2/pi
Python实现
线性归一化
定义数组:x = numpy.array(x)
获取二维数组列方向的最大值:x.max(axis = 0)
获取二维数组列方向的最小值:x.min(axis = 0)
对二维数组进行线性归一化:
def max_min_normalization(data_value, data_col_max_values, data_col_min_values):
""" Data normalization using max value and min value
Args:
data_value: The data to be normalized
data_col_max_values: The maximum value of data's columns
data_col_min_values: The minimum value of data's columns
"""
data_shape = data_value.shape
data_rows = data_shape[0]
data_cols = data_shape[1]
for i in xrange(0, data_rows, 1):
for j in xrange(0, data_cols, 1):
data_value[i][j] = \
(data_value[i][j] - data_col_min_values[j]) / \
(data_col_max_values[j] - data_col_min_values[j])
标准差归一化
定义数组:x = numpy.array(x)
获取二维数组列方向的均值:x.mean(axis = 0)
获取二维数组列方向的标准差:x.std(axis = 0)
对二维数组进行标准差归一化:
def standard_deviation_normalization(data_value, data_col_means,
data_col_standard_deviation):
""" Data normalization using standard deviation
Args:
data_value: The data to be normalized
data_col_means: The means of data's columns
data_col_standard_deviation: The variance of data's columns
"""
data_shape = data_value.shape
data_rows = data_shape[0]
data_cols = data_shape[1]
for i in xrange(0, data_rows, 1):
for j in xrange(0, data_cols, 1):
data_value[i][j] = \
(data_value[i][j] - data_col_means[j]) / \
data_col_standard_deviation[j]
非线性归一化(以lg为例)
定义数组:x = numpy.array(x)
获取二维数组列方向的最大值:x.max(axis=0)
获取二维数组每个元素的lg值:numpy.log10(x)
获取二维数组列方向的最大值的lg值:numpy.log10(x.max(axis=0))
对二维数组使用lg进行非线性归一化:
def nonlinearity_normalization_lg(data_value_after_lg,
data_col_max_values_after_lg):
""" Data normalization using lg
Args:
data_value_after_lg: The data to be normalized
data_col_max_values_after_lg: The maximum value of data's columns
"""
data_shape = data_value_after_lg.shape
data_rows = data_shape[0]
data_cols = data_shape[1]
for i in xrange(0, data_rows, 1):
for j in xrange(0, data_cols, 1):
data_value_after_lg[i][j] = \
data_value_after_lg[i][j] / data_col_max_values_after_lg[j]
【常见的内置函数】
1、enumerate(iterable,start=0)
是python的内置函数,是枚举、列举的意思,对于一个可迭代的(iterable)/可遍历的对象(如列表、字符串),enumerate将其组成一个索引序列,利用它可以同时获得索引和值。
2、zip(*iterables,strict=False)
用于将可迭代的对象作为参数,将对象中对应的元素打包成一个个元组,然后返回由这些元组组成的列表。如果各个迭代器的元素个数不一致,则返回列表长度与最短的对象相同,利用*号操作符,可以将元组解压为列表。
3、filter(function,iterable)
filter是将一个序列进行过滤,返回迭代器的对象,去除不满足条件的序列。
4、isinstance(object,classinfo)
是用来判断某一个变量或者是对象是不是属于某种类型的一个函数,如果参数object是classinfo的实例,或者object是classinfo类的子类的一个实例,
返回True。如果object不是一个给定类型的的对象, 则返回结果总是False
5、eval(expression[,globals[,locals]])
用来将字符串str当成有效的表达式来求值并返回计算结果,表达式解析参数expression并作为Python表达式进行求值(从技术上说是一个条件列表),采用globals和locals字典作为全局和局部命名空间。
【常用的句式】
1、format字符串格式化
format把字符串当成一个模板,通过传入的参数进行格式化,非常实用且强大。
2、连接字符串
常使用+连接两个字符串。
3、if...else条件语句
Python条件语句是通过一条或多条语句的执行结果(True或者False)来决定执行的代码块。其中if...else语句用来执行需要判断的情形。
4、for...in、while循环语句
循环语句就是遍历一个序列,循环去执行某个操作,Python中的循环语句有for和while。
5、import导入其他脚本的功能
有时需要使用另一个python文件中的脚本,这其实很简单,就像使用import关键字导入任何模块一样。
1、get() 返回指定键的值,如果值不在字典中返回default值。
语法:dict.get(key,default=None)
参数:
key 字典中要查找的键。
default 如果指定键的值不存在时,返回该默认值值。
例:
dict={'Name':'alex','Age':21}
print("Name is:%s"% dict.get('Name')+"\n"+ "Age is:%d"% dict.get('Age'))
显示结果为:
Name is:alex
Age is:21
2、update() 将一个字典中的值更新到另一个字典中。
语法:dict.update(dict2)
参数:
dict2 添加到指定字典dict里的字典。
例:
dict={'Name':'alex','Age':21}
dict2={'Sex':'female'}
dict.update(dict2)
print("Value is %s" % dict)
显示结果为:
Value is {'Name': 'alex', 'Age': 21, 'Sex': 'female'}