大橙子网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
如何用python实现图像的一维高斯滤波器
成都创新互联公司是一家专注网站建设、网络营销策划、重庆小程序开发、电子商务建设、网络推广、移动互联开发、研究、服务为一体的技术型公司。公司成立十年以来,已经为上千成都柔性防护网各业的企业公司提供互联网服务。现在,服务的上千客户与我们一路同行,见证我们的成长;未来,我们一起分享成功的喜悦。
现在把卷积模板中的值换一下,不是全1了,换成一组符合高斯分布的数值放在模板里面,比如这时中间的数值最大,往两边走越来越小,构造一个小的高斯包。实现的函数为cv2.GaussianBlur()。对于高斯模板,我们需要制定的是高斯核的高和宽(奇数),沿x与y方向的标准差(如果只给x,y=x,如果都给0,那么函数会自己计算)。高斯核可以有效的出去图像的高斯噪声。当然也可以自己构造高斯核,相关函数:cv2.GaussianKernel().
import cv2
import numpy as np
import matplotlib.pyplot as plt
img = cv2.imread(‘flower.jpg‘,0) #直接读为灰度图像
for i in range(2000): #添加点噪声
temp_x = np.random.randint(0,img.shape[0])
temp_y = np.random.randint(0,img.shape[1])
img[temp_x][temp_y] = 255
blur = cv2.GaussianBlur(img,(5,5),0)
plt.subplot(1,2,1),plt.imshow(img,‘gray‘)#默认彩色,另一种彩色bgr
plt.subplot(1,2,2),plt.imshow(blur,‘gray‘)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
# -*- coding: utf-8 -*-
"""
Created on Tue Mar 08 16:16:36 2016
@author: SumaiWong
"""
import numpy as np
import pandas as pd
from numpy import dot
from numpy.linalg import inv
iris = pd.read_csv('D:\iris.csv')
dummy = pd.get_dummies(iris['Species']) # 对Species生成哑变量
iris = pd.concat([iris, dummy], axis =1 )
iris = iris.iloc[0:100, :] # 截取前一百行样本
X = iris.ix[:, 0:4]
Y = iris['setosa'].reshape(len(iris), 1) #整理出X矩阵 和 Y矩阵
def GDA(Y, X):
theta1 = Y.mean() #类别1的比例
theta0 = 1-Y.mean() #类别2的比例
mu1 = X[Y==1].mean() #类别1特征的均值向量
mu0 = X[Y==0].mean() #类别2特征的均值向量
X_1 = X[Y==1]
X_0 = X[Y==0]
A = dot(X_1.T, X_1) - len(Y[Y==1])*dot(mu1.reshape(4,1), mu1.reshape(4,1).T)
B = dot(X_0.T, X_0) - len(Y[Y==0])*dot(mu0.reshape(4,1), mu0.reshape(4,1).T)
sigma = (A+B)/len(X) #sigma = X'X-n(X.bar)X.bar'=X'[I-1/n 1 1]X
return theta1, theta0, mu1, mu0, sigma
borderType= None)函数
此函数利用高斯滤波器平滑一张图像。该函数将源图像与指定的高斯核进行卷积。
src:输入图像
ksize:(核的宽度,核的高度),输入高斯核的尺寸,核的宽高都必须是正奇数。否则,将会从参数sigma中计算得到。
dst:输出图像,尺寸与输入图像一致。
sigmaX:高斯核在X方向上的标准差。
sigmaY:高斯核在Y方向上的标准差。默认为None,如果sigmaY=0,则它将被设置为与sigmaX相等的值。如果这两者都为0,则它们的值会从ksize中计算得到。计算公式为:
borderType:像素外推法,默认为None(参考官方文档 BorderTypes
)
在图像处理中,高斯滤波主要有两种方式:
1.窗口滑动卷积
2.傅里叶变换
在此主要利用窗口滑动卷积。其中二维高斯函数公式为:
根据上述公式,生成一个3x3的高斯核,其中最重要的参数就是标准差 ,标准差 越大,核中心的值与周围的值差距越小,曲线越平滑。标准差 越小,核中心的值与周围的值差距越大,曲线越陡峭。
从图像的角度来说,高斯核的标准差 越大,平滑效果越不明显。高斯核的标准差 越小,平滑效果越明显。
可见,标准差 越大,图像平滑程度越大
参考博客1:关于GaussianBlur函数
参考博客2:关于高斯核运算
python做科学计算的特点:1. 科学库很全。(推荐学习:Python视频教程)
科学库:numpy,scipy。作图:matplotpb。并行:mpi4py。调试:pdb。
2. 效率高。
如果你能学好numpy(array特性,f2py),那么你代码执行效率不会比fortran,C差太多。但如果你用不好array,那样写出来的程序效率就只能呵呵了。所以入门后,请一定花足够多的时间去了解numpy的array类。
3. 易于调试。
pdb是我见过最好的调试工具,没有之一。直接在程序断点处给你一个截面,这只有文本解释语言才能办到。毫不夸张的说,你用python开发程序只要fortran的1/10时间。
4. 其他。
它丰富而且统一,不像C++的库那么杂(好比pnux的各种发行版),python学好numpy就可以做科学计算了。python的第三方库很全,但是不杂。python基于类的语言特性让它比起fortran等更加容易规模化开发。
数值分析中,龙格-库塔法(Runge-Kutta methods)是用于非线性常微分方程的解的重要的一类隐式或显式迭代法。这些技术由数学家卡尔·龙格和马丁·威尔海姆·库塔于1900年左右发明。
龙格-库塔(Runge-Kutta)方法是一种在工程上应用广泛的高精度单步算法,其中包括著名的欧拉法,用于数值求解微分方程。由于此算法精度高,采取措施对误差进行抑制,所以其实现原理也较复杂。
高斯积分是在概率论和连续傅里叶变换等的统一化等计算中有广泛的应用。在误差函数的定义中它也出现。虽然误差函数没有初等函数,但是高斯积分可以通过微积分学的手段解析求解。高斯积分(Gaussian integral),有时也被称为概率积分,是高斯函数的积分。它是依德国数学家兼物理学家卡尔·弗里德里希·高斯之姓氏所命名。
洛伦茨吸引子及其导出的方程组是由爱德华·诺顿·洛伦茨于1963年发表,最初是发表在《大气科学杂志》(Journal of the Atmospheric Sciences)杂志的论文《Deterministic Nonperiodic Flow》中提出的,是由大气方程中出现的对流卷方程简化得到的。
这一洛伦茨模型不只对非线性数学有重要性,对于气候和天气预报来说也有着重要的含义。行星和恒星大气可能会表现出多种不同的准周期状态,这些准周期状态虽然是完全确定的,但却容易发生突变,看起来似乎是随机变化的,而模型对此现象有明确的表述。
更多Python相关技术文章,请访问Python教程栏目进行学习!以上就是小编分享的关于python能做什么科学计算的详细内容希望对大家有所帮助,更多有关python教程请关注环球青藤其它相关文章!
clear
close all
%%%%%%%%%%%%%%%%%%%%%%%%%生成实验数据集
rand('state',0)
sigma_matrix1=eye(2);
sigma_matrix2=50*eye(2);
u1=[0,0];
u2=[30,30];
m1=100;
m2=300;%样本数
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%sm1数据集
Y1=multivrandn(u1,m1,sigma_matrix1);
Y2=multivrandn(u2,m2,sigma_matrix2);
scatter(Y1(:,1),Y1(:,2),'bo')
hold on
scatter(Y2(:,1),Y2(:,2),'r*')
title('SM1数据集')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%sm2数据集
u11=[0,0];
u22=[5,5];
u33=[10,10];
u44=[15,15];
m=600;
sigma_matrix3=2*eye(2);
Y11=multivrandn(u11,m,sigma_matrix3);
Y22=multivrandn(u22,m,sigma_matrix3);
Y33=multivrandn(u33,m,sigma_matrix3);
Y44=multivrandn(u44,m,sigma_matrix3);
figure(2)
scatter(Y11(:,1),Y11(:,2),'bo')
hold on
scatter(Y22(:,1),Y22(:,2),'r*')
scatter(Y33(:,1),Y33(:,2),'go')
scatter(Y44(:,1),Y44(:,2),'c*')
title('SM2数据集')
end
function Y = multivrandn(u,m,sigma_matrix)
%%生成指定均值和协方差矩阵的高斯数据
n=length(u);
c = chol(sigma_matrix);
X=randn(m,n);
Y=X*c+ones(m,1)*u;
end
Python math 库提供许多对浮点数的数学运算函数,math模块不支持复数运算,若需计算复数,可使用cmath模块(本文不赘述)。
使用dir函数,查看math库中包含的所有内容:
1) math.pi # 圆周率π
2) math.e #自然对数底数
3) math.inf #正无穷大∞,-math.inf #负无穷大-∞
4) math.nan #非浮点数标记,NaN(not a number)
1) math.fabs(x) #表示X值的绝对值
2) math.fmod(x,y) #表示x/y的余数,结果为浮点数
3) math.fsum([x,y,z]) #对括号内每个元素求和,其值为浮点数
4) math.ceil(x) #向上取整,返回不小于x的最小整数
5)math.floor(x) #向下取整,返回不大于x的最大整数
6) math.factorial(x) #表示X的阶乘,其中X值必须为整型,否则报错
7) math.gcd(a,b) #表示a,b的最大公约数
8) math.frexp(x) #x = i *2^j,返回(i,j)
9) math.ldexp(x,i) #返回x*2^i的运算值,为math.frexp(x)函数的反运算
10) math.modf(x) #表示x的小数和整数部分
11) math.trunc(x) #表示x值的整数部分
12) math.copysign(x,y) #表示用数值y的正负号,替换x值的正负号
13) math.isclose(a,b,rel_tol =x,abs_tol = y) #表示a,b的相似性,真值返回True,否则False;rel_tol是相对公差:表示a,b之间允许的最大差值,abs_tol是最小绝对公差,对比较接近于0有用,abs_tol必须至少为0。
14) math.isfinite(x) #表示当x不为无穷大时,返回True,否则返回False
15) math.isinf(x) #当x为±∞时,返回True,否则返回False
16) math.isnan(x) #当x是NaN,返回True,否则返回False
1) math.pow(x,y) #表示x的y次幂
2) math.exp(x) #表示e的x次幂
3) math.expm1(x) #表示e的x次幂减1
4) math.sqrt(x) #表示x的平方根
5) math.log(x,base) #表示x的对数值,仅输入x值时,表示ln(x)函数
6) math.log1p(x) #表示1+x的自然对数值
7) math.log2(x) #表示以2为底的x对数值
8) math.log10(x) #表示以10为底的x的对数值
1) math.degrees(x) #表示弧度值转角度值
2) math.radians(x) #表示角度值转弧度值
3) math.hypot(x,y) #表示(x,y)坐标到原点(0,0)的距离
4) math.sin(x) #表示x的正弦函数值
5) math.cos(x) #表示x的余弦函数值
6) math.tan(x) #表示x的正切函数值
7)math.asin(x) #表示x的反正弦函数值
8) math.acos(x) #表示x的反余弦函数值
9) math.atan(x) #表示x的反正切函数值
10) math.atan2(y,x) #表示y/x的反正切函数值
11) math.sinh(x) #表示x的双曲正弦函数值
12) math.cosh(x) #表示x的双曲余弦函数值
13) math.tanh(x) #表示x的双曲正切函数值
14) math.asinh(x) #表示x的反双曲正弦函数值
15) math.acosh(x) #表示x的反双曲余弦函数值
16) math.atanh(x) #表示x的反双曲正切函数值
1)math.erf(x) #高斯误差函数
2) math.erfc(x) #余补高斯误差函数
3) math.gamma(x) #伽马函数(欧拉第二积分函数)
4) math.lgamma(x) #伽马函数的自然对数