大橙子网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
写个例子吧,需要安装numpy数学库
让客户满意是我们工作的目标,不断超越客户的期望值来自于我们对这个行业的热爱。我们立志把好的技术通过有效、简单的方式提供给客户,将通过不懈努力成为客户在信息化领域值得信任、有价值的长期合作伙伴,公司提供的服务项目有:申请域名、网页空间、营销软件、网站建设、河东网站维护、网站推广。
#!/usr/bin/python
import
numpy
as
np
#求解方程x^2+2x+1=0的根
#方程参数列表抽象成一下形式:
arg=[1,
2,
1]
#求解
np.roots(args)
运行即可求解了,如果没有实根会给虚根的结果
是要打印运算的过程公式吗,
def fun(b=0,c=0,d=0,a=0):
a = b + c + d
print a,'=','%s + %s + %s'%(b,c,d)
fun(2,3,4)
这篇文章主要介绍了Python中计算三角函数之cos()方法的使用简介,是Python入门的基础知识,需要的朋友可以参考下
cos()方法返回x弧度的余弦值。
语法
以下是cos()方法的语法:
cos(x)
注意:此函数是无法直接访问的,所以我们需要导入math模块,然后需要用math的静态对象来调用这个函数。
参数
x
--
这必须是一个数值
返回值
此方法返回-1
到
1之间的数值,它表示角度的余弦值
例子
下面的例子展示cos()方法的使用
?
1
2
3
4
5
6
7
8#!/usr/bin/python
import
math
"cos(3)
:
",
math.cos(3)
"cos(-3)
:
",
math.cos(-3)
"cos(0)
:
",
math.cos(0)
"cos(math.pi)
:
",
math.cos(math.pi)
"cos(2*math.pi)
:
",
math.cos(2*math.pi)
当我们运行上面的程序,它会产生以下结果:
?
1
2
3
4
5cos(3)
:
-0.9899924966
cos(-3)
:
-0.9899924966
cos(0)
:
1.0
cos(math.pi)
:
-1.0
cos(2*math.pi)
:
1.0
1、print()函数:打印字符串;
2、raw_input()函数:从用户键盘捕获字符;
3、len()函数:计算字符长度;
4、format()函数:实现格式化输出;
5、type()函数:查询对象的类型;
6、int()函数、float()函数、str()函数等:类型的转化函数;
7、id()函数:获取对象的内存地址;
8、help()函数:Python的帮助函数;
9、s.islower()函数:判断字符小写;
10、s.sppace()函数:判断是否为空格;
11、str.replace()函数:替换字符;
12、import()函数:引进库;
13、math.sin()函数:sin()函数;
14、math.pow()函数:计算次方函数;
15、os.getcwd()函数:获取当前工作目录;
16、listdir()函数:显示当前目录下的文件;
17、time.sleep()函数:停止一段时间;
18、random.randint()函数:产生随机数;
19、range()函数:返回一个列表,打印从1到100;
20、file.read()函数:读取文件返回字符串;
21、file.readlines()函数:读取文件返回列表;
22、file.readline()函数:读取一行文件并返回字符串;
23、split()函数:用什么来间隔字符串;
24、isalnum()函数:判断是否为有效数字或字符;
25、isalpha()函数:判断是否全为字符;
26、isdigit()函数:判断是否全为数字;
27、 lower()函数:将数据改成小写;
28、upper()函数:将数据改成大写;
29、startswith(s)函数:判断字符串是否以s开始的;
30、endwith(s)函数:判断字符串是否以s结尾的;
31、file.write()函数:写入函数;
32、file.writeline()函数:写入文件;
33、abs()函数:得到某数的绝对值;
34、file.sort()函数:对书数据排序;
35、tuple()函数:创建一个元组;
36、find()函数:查找 返回的是索引;
37、dict()函数:创建字典;
38、clear()函数:清楚字典中的所有项;
39、copy()函数:复制一个字典,会修改所有的字典;
40、 get()函数:查询字典中的元素。
…………
对于气象绘图来讲,第一步是对数据的处理,通过各类公式,或者统计方法将原始数据处理为目标数据。
按照气象统计课程的内容,我给出了一些常用到的统计方法的对应函数:
在计算气候态,区域平均时均要使用到求均值函数,对应NCL中的dim_average函数,在python中通常使用np.mean()函数
numpy.mean(a, axis, dtype)
假设a为[time,lat,lon]的数据,那么
需要特别注意的是,气象数据中常有缺测,在NCL中,使用求均值函数会自动略过,而在python中,当任意一数与缺测(np.nan)计算的结果均为np.nan,比如求[1,2,3,4,np.nan]的平均值,结果为np.nan
因此,当数据存在缺测数据时,通常使用np.nanmean()函数,用法同上,此时[1,2,3,4,np.nan]的平均值为(1+2+3+4)/4 = 2.5
同样的,求某数组最大最小值时也有np.nanmax(), np.nanmin()函数来补充np.max(), np.min()的不足。
其他很多np的计算函数也可以通过在前边加‘nan’来使用。
另外,
也可以直接将a中缺失值全部填充为0。
np.std(a, axis, dtype)
用法同np.mean()
在NCL中有直接求数据标准化的函数dim_standardize()
其实也就是一行的事,根据需要指定维度即可。
皮尔逊相关系数:
相关可以说是气象科研中最常用的方法之一了,numpy函数中的np.corrcoef(x, y)就可以实现相关计算。但是在这里我推荐scipy.stats中的函数来计算相关系数:
这个函数缺点和有点都很明显,优点是可以直接返回相关系数R及其P值,这避免了我们进一步计算置信度。而缺点则是该函数只支持两个一维数组的计算,也就是说当我们需要计算一个场和一个序列的相关时,我们需要循环来实现。
其中a[time,lat,lon],b[time]
(NCL中为regcoef()函数)
同样推荐Scipy库中的stats.linregress(x,y)函数:
slop: 回归斜率
intercept:回归截距
r_value: 相关系数
p_value: P值
std_err: 估计标准误差
直接可以输出P值,同样省去了做置信度检验的过程,遗憾的是仍需同相关系数一样循环计算。
首先我们先来了解一下计算平均数的IPO模式.
输入:待输入计算平均数的数。
处理:平均数算法
输出:平均数
明白了程序的IPO模式之后,我们打开本地的python的IDE
工具,并新建一个python文件,命名为test6.py.
请点击输入图片描述
请点击输入图片描述
请点击输入图片描述
打开test6.py,进行编码,第一步,提示用户输入要计算多少个数的平均数。
请点击输入图片描述
第二步,初始化sum总和的值。注意,这是编码的好习惯,在定义一个变量的时候,给一个初始值。
请点击输入图片描述
第三步,循环输入要计算平均数的数,并计算总和sum的值。
请点击输入图片描述
最后,计算出平均数,并输出,利用“总和/数量”的公式计算出平均数。
请点击输入图片描述
编码完成后,记得保存,然后进行调试运行。按F5键或者点击菜单栏中的“run”-》“run model”来运行程序。
请点击输入图片描述
请点击输入图片描述