大橙子网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
出现Hash冲突以及哪些解决散列冲突的方法是什么,针对这个问题,这篇文章详细介绍了相对应的分析和解答,希望可以帮助更多想解决这个问题的小伙伴找到更简单易行的方法。
平阳ssl适用于网站、小程序/APP、API接口等需要进行数据传输应用场景,ssl证书未来市场广阔!成为创新互联的ssl证书销售渠道,可以享受市场价格4-6折优惠!如果有意向欢迎电话联系或者加微信:18982081108(备注:SSL证书合作)期待与您的合作!
通过构造性能良好的哈希函数,可以减少冲突,但一般不可能完全避免冲突,因此解决冲突是哈希法的另一个关键问题。
创建哈希表和查找哈希表都会遇到冲突,两种情况下解决冲突的方法应该一致。
下面以创建哈希表为例,说明解决冲突的方法。常用的解决冲突方法有以下四种:
开放定址法
这种方法也称再散列法,其基本思想是:当关键字key的哈希地址p=H(key)出现冲突时,以p为基础,产生另一个哈希地址p1,如果p1仍然冲突,再以p为基础,产生另一个哈希地址p2,…,直到找出一个不冲突的哈希地址pi ,将相应元素存入其中。
这种方法有一个通用的再散列函数形式:
Hi=(H(key)+di)% m i=1,2,…,n
其中H(key)为哈希函数,m 为表长,di称为增量序列。增量序列的取值方式不同,相应的再散列方式也不同。主要有以下三种:
线性探测再散列
dii=1,2,3,…,m-1
这种方法的特点是:冲突发生时,顺序查看表中下一单元,直到找出一个空单元或查遍全表。
二次探测再散列
di=12,-12,22,-22,…,k2,-k2 ( k<=m/2 )
这种方法的特点是:冲突发生时,在表的左右进行跳跃式探测,比较灵活。
伪随机探测再散列,di=伪随机数序列。
具体实现时,应建立一个伪随机数发生器,(如i=(i+p) % m),并给定一个随机数做起点。
例如,已知哈希表长度m=11,哈希函数为:H(key)= key % 11,则H(47)=3,H(26)=4,H(60)=5,假设下一个关键字为69,则H(69)=3,与47冲突。
如果用线性探测再散列处理冲突,下一个哈希地址为H1=(3 + 1)% 11 = 4,仍然冲突,再找下一个哈希地址为H2=(3 + 2)% 11 = 5,还是冲突,继续找下一个哈希地址为H3=(3 + 3)% 11 = 6,此时不再冲突,将69填入5号单元。
如果用二次探测再散列处理冲突,下一个哈希地址为H1=(3 + 12)% 11 = 4,仍然冲突,再找下一个哈希地址为H2=(3 - 12)% 11 = 2,此时不再冲突,将69填入2号单元。
如果用伪随机探测再散列处理冲突,且伪随机数序列为:2,5,9,……..,则下一个哈希地址为H1=(3 + 2)% 11 = 5,仍然冲突,再找下一个哈希地址为H2=(3 + 5)% 11 = 8,此时不再冲突,将69填入8号单元。
再哈希法
这种方法是同时构造多个不同的哈希函数:
Hi=RH1(key) i=1,2,…,k
当哈希地址Hi=RH1(key)发生冲突时,再计算Hi=RH2(key)……,直到冲突不再产生。这种方法不易产生聚集,但增加了计算时间。
链地址法
这种方法的基本思想是将所有哈希地址为i的元素构成一个称为同义词链的单链表,并将单链表的头指针存在哈希表的第i个单元中,因而查找、插入和删除主要在同义词链中进行。链地址法适用于经常进行插入和删除的情况。
建立公共溢出区
这种方法的基本思想是:将哈希表分为基本表和溢出表两部分,凡是和基本表发生冲突的元素,一律填入溢出表。
优缺点
开放散列(open hashing)/ 拉链法(针对桶链结构)
1)优点:
①对于记录总数频繁可变的情况,处理的比较好(也就是避免了动态调整的开销)
②由于记录存储在结点中,而结点是动态分配,不会造成内存的浪费,所以尤其适合那种记录本身尺寸(size)很大的情况,因为此时指针的开销可以忽略不计了
③删除记录时,比较方便,直接通过指针操作即可
2)缺点:
①存储的记录是随机分布在内存中的,这样在查询记录时,相比结构紧凑的数据类型(比如数组),哈希表的跳转访问会带来额外的时间开销
②如果所有的 key-value 对是可以提前预知,并之后不会发生变化时(即不允许插入和删除),可以人为创建一个不会产生冲突的完美哈希函数(perfect hash function),此时封闭散列的性能将远高于开放散列
③由于使用指针,记录不容易进行序列化(serialize)操作
封闭散列(closed hashing)/ 开放定址法
1)优点:
①记录更容易进行序列化(serialize)操作
②如果记录总数可以预知,可以创建完美哈希函数,此时处理数据的效率是非常高的
2)缺点:
①存储记录的数目不能超过桶数组的长度,如果超过就需要扩容,而扩容会导致某次操作的时间成本飙升,这在实时或者交互式应用中可能会是一个严重的缺陷
②使用探测序列,有可能其计算的时间成本过高,导致哈希表的处理性能降低
③由于记录是存放在桶数组中的,而桶数组必然存在空槽,所以当记录本身尺寸(size)很大并且记录总数规模很大时,空槽占用的空间会导致明显的内存浪费
④删除记录时,比较麻烦。比如需要删除记录a,记录b是在a之后插入桶数组的,但是和记录a有冲突,是通过探测序列再次跳转找到的地址,所以如果直接删除a,a的位置变为空槽,而空槽是查询记录失败的终止条件,这样会导致记录b在a的位置重新插入数据前不可见,所以不能直接删除a,而是设置删除标记。这就需要额外的空间和操作。
关于出现Hash冲突以及哪些解决散列冲突的方法是什么问题的解答就分享到这里了,希望以上内容可以对大家有一定的帮助,如果你还有很多疑惑没有解开,可以关注创新互联行业资讯频道了解更多相关知识。