大橙子网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
Required Exams
公司主营业务:成都做网站、成都网站建设、移动网站开发等业务。帮助企业客户真正实现互联网宣传,提高企业的竞争能力。创新互联建站是一支青春激扬、勤奋敬业、活力青春激扬、勤奋敬业、活力澎湃、和谐高效的团队。公司秉承以“开放、自由、严谨、自律”为核心的企业文化,感谢他们对我们的高要求,感谢他们从不同领域给我们带来的挑战,让我们激情的团队有机会用头脑与智慧不断的给客户带来惊喜。创新互联建站推出梅县免费做网站回馈大家。
· DS700 – Descriptive and Inferential Statistics on Big Data
· DS701 – Advanced Analytical Techniques on Big Data
· DS702 - Machine Learning at Scale
Each exam may be taken in any order. All three exams must be passed within 365 days of each other. Candidates who fail an exam must wait a period of thirty calendar days, beginning the day after the failed attempt, before they may retake the same exam. Candidates must pay for each exam attempt.
Each passed exam is verifiable in your exam transcript and history.
Each exam is a single challenge scenario. You are provided access to the scenario, the data sets, and the cluster. You are given eight (8) hours to complete the challenge.
· Extract relevant features from a large dataset that may contain bad records, partial records, errors, or other forms of “noise”
· Extract features from a data stored in a wide range of possible formats, including JSON, XML, raw text logs, industry-specific encodings, and graph link data
· Use statistical tests to determine confidence for a hypothesis
· Calculate common summary statistics, such as mean, variance, and counts
· Fit a distribution to a dataset and use that distribution to predict event likelihoods
· Perform complex statistical calculations on a large dataset
· Build a model that contains relevant features from a large dataset
· Define relevant data groupings, including number, size, and characteristics
· Assign data records from a large dataset into a defined set of data groupings
· Evaluate goodness of fit for a given set of data groupings and a dataset
· Apply advanced analytical techniques, such as network graph analysis or outlier detection
· Build a model that contains relevant features from a large dataset
· Predict labels for an unlabeled dataset using a labeled dataset for reference
· Select a classification algorithm that is appropriate for the given dataset
· Tune algorithm metaparameters to maximize algorithm performance
· Use validation techniques to determine the successfulness of a given algorithm for the given dataset
All CCP: Data Scientist exams are remote-proctored and available anywhere, anytime.
Exams are hands-on, practical exams using data science tools on Cloudera technologies. Each user is given their own 7-node, high-performance CDH5 (currently 5.3.2) cluster pre-loaded with Spark, Impala, Crunch, Hive, Pig, Sqoop, Kafka, Flume, Kite, Hue, Oozie, DataFu, and many others . In addition the cluster also comes with Python (2.6 and 3.4), Perl 5.10, Elephant Bird, Cascading 2.6, Brickhouse, Hive Swarm, Scala 2.11, Scalding, IDEA, Sublime, Eclipse, NetBeans, scikit-learn, octave, NumPy, SciPy, Anaconda, R, plyr, dplyrimpaladb, SparkML, vowpal wabbit, clouderML, oryx, impyla, CoreNLP, The Stanford Parser: A statistical parser, Stanford Log-linear Part-Of-Speech Tagger, Stanford Named Entity Recognizer (NER), Stanford Word Segmenter, opennlp, H2O, java-ml, RapidMiner, caffe, Weka, NLTK, matplotlib, ggplot, d3py, SparkingPandas, randomforest, R: ggplot2, Sparkling water.
Currently, the cluster is open to the internet and there are no restrictions on tools you can install or websites or resources you may use.