大橙子网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
什么是求素数
创新互联专注为客户提供全方位的互联网综合服务,包含不限于成都网站设计、网站建设、潍城网络推广、小程序制作、潍城网络营销、潍城企业策划、潍城品牌公关、搜索引擎seo、人物专访、企业宣传片、企业代运营等,从售前售中售后,我们都将竭诚为您服务,您的肯定,是我们最大的嘉奖;创新互联为所有大学生创业者提供潍城建站搭建服务,24小时服务热线:18982081108,官方网址:www.cdcxhl.com
素数指的是因子只有1和本身的数(1不是素数),求解素数在数学上应用非常广泛,而求解n以内的素数也是我们编程时常遇到的问题,在这个问题上,筛选法求解素数运行得非常快。
i在2到n-1之间任取一个数,如果n能被整除则不是素数,否则就是素数
称筛法
筛选法又称筛法,是求不超过自然数N(N>1)的所有质数的一种方法。据说是古希腊的埃拉托斯特尼(Eratosthenes,约公元前274~194年)发明的,又称埃拉托斯特尼筛子。
具体做法是:
先把N个自然数按次序排列起来。1不是质数,也不是合数,要划去。第二个数2是质数留下来,而把2后面所有能被2整除的数都划去。2后面第一个没划去的数是3,把3留下,再把3后面所有能被3整除的数都划去。3后面第一个没划去的数是5,把5留下,再把5后面所有能被5整除的数都划去。这样一直做下去,就会把不超过N的全部合数都筛掉,留下的就是不超过N的全部质数。因为希腊人是把数写在涂腊的板上,每要划去一个数,就在上面记以小点,寻求质数的工作完毕后,这许多小点就像一个筛子,所以就把埃拉托斯特尼的方法叫做“埃拉托斯特尼筛”,简称“筛法”。(另一种解释是当时的数写在纸草上,每要划去一个数,就把这个数挖去,寻求质数的工作完毕后,这许多小洞就像一个筛子。)
普通枚举法:
#include#include #include #include using namespace std; bool isPlain(int x){ if(x<2) return false; else{ for(int i=2;i >n; int cot=0; for(int j=0;j
筛选法:
原始版本:
#include#include #include #include using namespace std; int main() { int n; cin>>n; bool* ans=new bool[n]; memset(ans,true,sizeof(bool)*n);// ans[0]=false; ans[1]=false; for(int i=2;i
改进版本
#include#include #include #include #include using namespace std; int main() { int n; cin>>n; bitset<100000> ans; ans.set(0); ans.set(1); for(int j=2; j<=sqrt(n); j++) { for(int i=2*j; i < n; i+=j) { ans.set(i); } } int cot=0; for(int i=0; i
总结
以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,如果有疑问大家可以留言交流,谢谢大家对创新互联的支持。