大橙子网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
如果大家对HMS ML Kit 人脸检测功能有所了解,相信已经动手调用我们提供的接口编写自己的APP啦。目前就有小伙伴在调用接口的过程中反馈,不太清楚HMS ML Kit 文档中的MLMaxSizeFaceTransactor这个接口的使用方法。为了让大家更加深刻的了解我们的接口,方便在场景中使用,在这篇文章中小编准备抛砖引玉,大家可以打开思路,多多尝试。如果有小伙伴想要深入的了解更加全面具体的功能,请大家移步 https://developer.huawei.com/consumer/cn/hms/huawei-mlkit。
成都创新互联公司专注于浚县网站建设服务及定制,我们拥有丰富的企业做网站经验。 热诚为您提供浚县营销型网站建设,浚县网站制作、浚县网页设计、浚县网站官网定制、小程序定制开发服务,打造浚县网络公司原创品牌,更为您提供浚县网站排名全网营销落地服务。
相信大家都有在五一、十一出去游玩的经历,是不是都是这样的people mountain people sea.
好不容易找个人少的地方,结果拍出来的照片是这样的。
这样的
还有这样的
不看不知道,原来我的面部表情这么丰富。。是不是很心累?每次想要发个出去浪的朋友圈,都要在白天拍的成百上千张类似款的照片里,花上一小时才能找到一张能看的照片。。。
为了解决类似问题,HMS ML Kit 提供了追踪识别画面中最大脸的接口,能够识别图像中的最大脸,方便对跟踪图像中的”重点目标“做相关操作和处理。本文中就简单的调用MLMaxSizeFaceTransactor这个接口,实现最大脸微笑抓拍的功能。
很简单,下载安装即可。具体下载链接:
Android studio 官网下载链接:
https://developer.android.com/studio
Android studio安装流程参考链接:
https://www.cnblogs.com/xiadewang/p/7820377.html
打开AndroidStudio项目级build.gradle文件
增量添加如下maven地址:
buildscript {
{
maven {url 'http://developer.huawei.com/repo/'}
}
}
allprojects {
repositories {
maven { url 'http://developer.huawei.com/repo/'}
}
}
要使应用程序能够在用户从华为应用市场安装您的应用程序后,自动将最新的机器学习模型更新到用户设备,请将以下语句添加到该应用程序的AndroidManifest.xml文件中:
...
@Override
public void onCreate(Bundle savedInstanceState) {
……
if (!allPermissionsGranted()) {
getRuntimePermissions();
}
可以通过人脸识别检测配置器“MLFaceAnalyzerSetting”创建人脸识别检测器。
MLFaceAnalyzerSetting setting =
new MLFaceAnalyzerSetting.Factory()
.setFeatureType(MLFaceAnalyzerSetting.TYPE_FEATURES)
.setKeyPointType(MLFaceAnalyzerSetting.TYPE_UNSUPPORT_KEYPOINTS)
.setMinFaceProportion(0.1f)
.setTracingAllowed(true)
.create();
通过MLMaxSizeFaceTransactor.Creator创建“MLMaxSizeFaceTransactor”对象用于处理检测到的最大脸,其中objectCreateCallback()方法是在检测到对象的时候调用的,objectUpdateCallback()方法是在对象更新了的时候调用的,在方法里通过Overlay在识别到的最大人脸上标记了一个方块,并通过检测结果获取MLFaceEmotion来识别微笑表情触发拍照。
MLMaxSizeFaceTransactor transactor = new MLMaxSizeFaceTransactor.Creator(analyzer, new MLResultTrailer() {
@Override
public void objectCreateCallback(int itemId, MLFace obj) {
LiveFaceAnalyseActivity.this.overlay.clear();
if (obj == null) {
return;
}
LocalFaceGraphic faceGraphic =
new LocalFaceGraphic(LiveFaceAnalyseActivity.this.overlay, obj, LiveFaceAnalyseActivity.this);
LiveFaceAnalyseActivity.this.overlay.addGraphic(faceGraphic);
MLFaceEmotion emotion = obj.getEmotions();
if (emotion.getSmilingProbability() > smilingPossibility) {
safeToTakePicture = false;
mHandler.sendEmptyMessage(TAKE_PHOTO);
}
}
@Override
public void objectUpdateCallback(MLAnalyzer.Result var1, MLFace obj) {
LiveFaceAnalyseActivity.this.overlay.clear();
if (obj == null) {
return;
}
LocalFaceGraphic faceGraphic =
new LocalFaceGraphic(LiveFaceAnalyseActivity.this.overlay, obj, LiveFaceAnalyseActivity.this);
LiveFaceAnalyseActivity.this.overlay.addGraphic(faceGraphic);
MLFaceEmotion emotion = obj.getEmotions();
if (emotion.getSmilingProbability() > smilingPossibility && safeToTakePicture) {
safeToTakePicture = false;
mHandler.sendEmptyMessage(TAKE_PHOTO);
}
}
@Override
public void lostCallback(MLAnalyzer.Result result) {
LiveFaceAnalyseActivity.this.overlay.clear();
}
@Override
public void completeCallback() {
LiveFaceAnalyseActivity.this.overlay.clear();
}
}).create();
this.analyzer.setTransactor(transactor);
this.mLensEngine = new LensEngine.Creator(context, this.analyzer).setLensType(this.lensType)
.applyDisplayDimension(640, 480)
.applyFps(25.0f)
.enableAutomaticFocus(true)
.create();
this.mPreview.start(this.mLensEngine, this.overlay);