大橙子网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
这篇文章主要介绍“怎么处理HDFS问题”,在日常操作中,相信很多人在怎么处理HDFS问题问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”怎么处理HDFS问题”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!
成都创新互联公司是一家专业提供合肥企业网站建设,专注与成都做网站、成都网站建设、H5网站设计、小程序制作等业务。10年已为合肥众多企业、政府机构等服务。创新互联专业网站设计公司优惠进行中。
hdfs有一个目录扫描机制,默认6小时会全盘扫描一次所有block,判断与内存里的那份blockMap是否一致。参考
https://blog.cloudera.com/hdfs-datanode-scanners-and-disk-checker-explained/
在小文件比较多的情况,扫描的时候特征很明显——磁盘的iops很高,但吞吐量很低。当然这不是引起datanode心跳超时的原因,真正的原因是处理扫描后的结果,比如比较完发现有20000个block不一致,在修复这些block时不断的持有了 FsDatasetImpl 这个对象的一把锁,在磁盘比较慢的情况下,可能需要5分钟甚至10分钟处理完,从而一直阻塞读、写、心跳的线程。
详细的可以了解 HDFS-14476 lock too long when fix inconsistent blocks between disk and in-memory,包括一些特征、证据,以及block修复逻辑,细节比较多。
解决办法是,我们这边加了个patch(已合入2.10和3.x),在处理异常block的时候,中间休息2秒,处理一下正常的请求,不至于datanode卡住甚至离线。
修复后的结果也是很明显,datanode心跳平滑了许多
2. namenode迁移裁撤,遇到客户端无法写入
在文章 HDFS namenode节点裁撤不停服迁移实践 里总结了在线迁移 namenode 的方法。迁移/裁撤的思路是保持 namenode hostname 不变,滚动迁移 standby 的方式迁移。
但是在我们的迁移实践中,发现 hdfs namenode 完成迁移后,集群正常,但 hdfs 客户端访问异常。在 yarn 这样的长任务场景下,会导致文件读写一直失败,直到 yarn nodemanager 重启。
具体问题是这样的:
client使用的是 ConfiguredFailoverProxyProvider ,client启动之后会根据当时的inetsocket创建nn1,nn2两个namenode proxy,这个在任何网络异常的情况下都不会重新创建。
client 的 updateAddress 方法能检测到namenode ip发生了变化,但由于那个异常没有捕获,本该在下次循环使用正确的 namenode ip 就能正常,但抛出异常后导致client重新连接namenode,然而上面的 namenode proxy 还是旧地址,SetupConnection 异常,又进入updateAddress判断逻辑,返回true又去建连接,陷入了死结。
复现步骤
打开一个hdfsclient,长时间写一个文件 hdfs put
更新hdfs新namenode hostname-ip
stop old nn2, start new nn2
更新客户端的namenode hostname-ip (client还在操作文件)
切换到新namenode hdfs haadmin -failover nn1 nn2
此时会发现client一直报错
在yarn客户端启动的周期内,哪怕是新文件写入,依旧会报错
对 ConfiguredFailoverProxyProvider 打了个patch,就是在client failover之后,也进行updateAddress判断,如果有ip变动,就重新 createProxy。验证这个patch同样有效。不过在client那边统一捕获会比较好,因为还有其他类型的HaProvider可能也有这个问题。
这个问题的 patch 已经被合入 Apache Hadoop 3.4,见 HADOOP-17068 client fails forever when namenode ipaddr changed。我们用的版本是 2.6.0-cdh6.4.11 ,也已合入。
除了从根源问题上解决,也可以在 namenode 迁移操作时,在老节点上启用端口转发,再逐个重启 yarn,避免引起大范围故障。
现象:集群将满时,扩容了批机器缓解空间。运行了2个星期客户端突然报文件写入失败
原因:hdfs在部分datanode空间满的情况下,理论会自动挑选其它可用的空闲节点。由于 dfs.datanode.du.reserved
配置不当,导致依然会选中满节点。具体是dfs.datanode.du.reserved
如果小于分区block reserved,在磁盘用满时就会出现
org.apache.hadoop.ipc.RemoteException(java.io.IOException): File
/kafka/xxxtmp.parquet could only be replicated to
0 nodes instead of minReplication
(=1). \
There are
14 datanode(s) running
and no node(s) are excluded
in this operation.
解决:
扩容完,跑rebalance
修改磁盘分区的block reserved,使其小于 dfs.datanode.du.reserved
. 见 hdfs datanode Non DFS Used与Remaining .
增加单个datanode容量告警
启动 rebalance 命令./start-balancer.sh -threshold 10
,如果需要提高速度可以修改限流带宽hdfs dfsadmin -setBalancerBandwidth 52428800
但是 datanode 上同时接收 blocks 并发数,是不能在线调整的(或者说只能调小),调整hdfs-site.xml
默认的balance参数,并重启
dfs.balancer.moverThreads=1000
dfs.balancer.dispatcherThreads=200
dfs.datanode.balance.max.concurrent.moves=50
如果启动balance时,尝试以更高的并发执行,datanode会判断没有足够的线程接收 block: IOException: Got error, status message Not able to copy block … because threads quota is exceeded。
当 move 出现失败时,迁移速度是指数级下降的,因为move block失败默认会sleep一段时间。
./start-balancer.sh
-threshold
5\
-Ddfs.datanode.balance.max.concurrent.moves=20 \
-Ddfs.datanode.balance.bandwidthPerSec=150000000 \
-Ddfs.balancer.moverThreads=500 \
-Ddfs.balancer.dispatcherThreads=100
腾讯云上的机器,可以直接在原有 datanode 上直接挂在新的磁盘,快速给hdfs扩容。
增加磁盘,不需要重启datanode。(前提是设置了 dfs.datanode.fsdataset.volume.choosing.policy
为AvailableSpaceVolumeChoosingPolicy
)
挂载后,先建立hadoop数据目录并修正权限
在hdfs-site.xml
里加上新目录配置 dfs.datanode.data.dir
可以使用 reconfig 命令使其生效: hdfs dfsadmin -reconfig datanode dn-x-x-x-x:50020 start
现象:active namenode 内存故障,主备切换失败
原因:dfs.ha.fencing.methods
设置为了ssh,但是并不能登录其他namenode执行fence
解决:生成ssh key,免密码登录。或者改成shell(/bin/true)
,强切。注意,修改fence方式后,需要重启zkfc。
现象:执行 hdfs
客户端命令报错 input/output error
,试着拷贝 hadoop / jdk 的介质目录,亦发现文件损坏。有时会发现 jvm core
原因:磁盘存在坏块,刚好hdfs或者jdk的 jar 库损坏。通过观察 messages 发现有 sda IO Input/Output Error
使用badblocks -s -v -o bb.log /dev/sda
可以看到磁盘损坏了哪些扇区
解决:从其他机器,拷贝一份正常的介质
误将系统盘作为了dfs.datanode.data.dir
,运行一段时间后,这个分区很容易最先满。
这个是配置上的问题,理解datanode的工作方式,可以快速的将这个分区里的block挪到正确的磁盘分区。
处理方法就是停止datanode,拷贝/data
block到其它分区,删掉/data
的配置。因为datanode上block的位置是每次启动的时候,扫描上报给namenode,所以可以做物理拷贝。
可以使用拷贝命令cp -a /data/hadoopdata/current/BP-*-*/current/finalized/* /data1/hadoopdata/current/BP-*-*/current/finalized/
,不能拷贝整个 hadoopdata 目录,因为VERSION文件里面的storageID不同。
现象:将datanode加入 exclude ,正常 decomissing 的方式退役节点,应用层反馈 spark 任务部分异常,报错 Unable to close file because the last block doest not have enough number of replicas ,但该集群一些其它的文件读写任务正常。
原因:spark任务会频繁的创建、删除application目录。在decomissing时,部分磁盘性能低的节点,磁盘更加繁忙,导致出现 last contact 心跳时间长
解决:经过验证,发现直接 kill datanode进程的方式,不影响spark任务。但必须保证一个一个的kill,否则会出现 missing block. (这不一定是解决问题最好的办法,但的确有效)
standby namenode的一个作用是,定期合并从journalnode上获取的editlog,生成新的元数据fsimage,然后推送到active namenode。
当standby namenode出现异常,如进程退出、软件bug(比如我们遇到过 IOException: No image directories available!),导致长时间未合并editlog。一旦需要发生切换或者重启namenode,有可能导致启动时间过长,严重的editlog合并需要的内存不足,无法启动namenode.
如果内存不足,一种解决办法是借一台高内存临时机器合并editlog:
把standby停下来,将hdfs的软件介质和配置文件,拷贝到高内存机器
同时拷贝dfs.namenode.name.dir
目录中最新能用的 fsimage_xxx 和它之后的所有 edits_xxx-xxx
在临时机器上启动 namenode 进程,会自动从对应目录加载 fsiamge 、合并editlog
预防比补救要重要,一定要监控namenode上 TransactionsSinceLastCheckpoint
这个指标,我们的阈值是达到 5000000 就告警。
这个问题 HDFS-15402 是在定期对 datanode http://127.0.0.1:50075/jmx
jmx 进行探测的时候产生的,我们有 5 个 hadoop 3.1.3 的集群都存在该问题。在 hadoop 2.x 中正常。
50075 端口上产生过多 close-wait 的影响是,正常的 webhdfs 会出现 504 Gateway-timeout
[root@dn-9-4-xxx-yy
/tmp]# ss -ant|grep :50075 |grep CLOSE-WAIT|wc -l
16464
[root@dn-9-4-xxx-yy
/tmp]# ss -ant|grep :50075 |grep CLOSE-WAIT|head -3
CLOSE-WAIT
123 0 9.4.xxx.yy:50075
9.4.xxx.yy:39706
CLOSE-WAIT
123 0 9.4.xxx.yy:50075
9.4.xxx.yy:51710
CLOSE-WAIT
123 0 9.4.xxx.yy:50075
9.4.xxx.yy:47475
lsof
-i:39706
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
java 134304 hdfs
*307u IPv4 429yy7315 0t0 TCP dn-9-4-xxx-yy:50075->dn-9-4-xxx-yy:39706 (CLOSE_WAIT)
Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name
tcp 123 0 9.4.xxx.yy:50075 9.4.xxx.yy:39706 CLOSE_WAIT 134304/java
CLOSE-WAIT 状态是客户端(curl)发起关闭tcp连接时,服务端(datanode)收到了FIN-ACK,但在关闭socket时一直没有完成。正常流程是关闭socket完成,然后向客户端发送FIN
所以问题出在datanode server上,与knox还是haproxy客户端没有关系。并且这个问题调整os内核参数是没有用的,除非kill datanode,否则close-wait状态会永久存在。使用网上的kill_close_wait_connections.pl
能够清理这些 close-wait,之后 webhdfs 请求变得好转。
目前避开的方法就是,不再请求 datanode jmx 做监控,只获取 namenode 上的指标。datanode 上采集 os 级别的指标。
在官方 jira 里我们提了这个问题 KNOX-2139,当我们使用 webhdfs with knox 上传 8589934592 bytes 大小的文件,会出现 (55) Send failure: Broken pipe,在 hdfs 只能看到一个空文件。而且在版本 knox 1.1, 1.2 中是必现,在 0.8 版本正常。
简单 debug 了一下代码,knox 拿到的请求 contentLength 为 0,8G 以外的情况 contentLength 为-1。
我们后来使用 haproxy 代替 knox 解决 knox 自身上传速度慢和这个 8G 文件的问题。在 备份系统上传优化:从knox到haproxy 有介绍我们的实现
不过在最新的 1.4 版本,8G问题又消失了。根据官方的恢复,可能跟 jetty 的升级有关。
Unable to load native-hadoop library for your platform… using builtin-java classes
经常在执行 hdfs
客户端命令时会有这样的提示,其实是个老生常谈的问题。
简单说就是系统里没有找到原生的 hadoop 库 libhdfs.so
,这个库是 C 写的,性能比较好。缺少但不影响使用,因为 hadoop 里有 java 实现的客户端库。
出现这个我总结原因有 3 个:
hadoop 安装包里没有自带 libhdfs.so
这个情况占很大一部分。去到目录${HADOOP_HOME}/lib/native/
,看下是否有libhdfs.so,libhdfs.a,libhadoop.so,libhadoop.a。如果没有的话,可以重新下一个完整的二进制包,把lib/native
拷出来用
这种看到才是正常的
./bin/hadoop checknative
20/05/14 20:13:39 INFO bzip2.Bzip2Factory: Successfully loaded
& initialized native-bzip2 library system-native
20/05/14 20:13:39 INFO zlib.ZlibFactory: Successfully loaded
& initialized native-zlib library
Native library checking:
hadoop: true
/data1/hadoop-hdfs/hadoop-dist/target/hadoop-2.6.0-cdh6.4.11-tendata/lib/native/libhadoop.so.1.0.0
zlib: true
/lib64/libz.so.1
snappy: true
/data1/hadoop-hdfs/hadoop-dist/target/hadoop-2.6.0-cdh6.4.11-tendata/lib/native/libsnappy.so.1
lz4: true revision:10301
bzip2: true
/lib64/libbz2.so.1
openssl: true
/usr/lib64/libcrypto.so
实在不行就在自己的 os 上编译一个。
mvn clean package
-Pdist,native
-DskipTests
-Dtar
-Dbundle.snappy
-Dsnappy.lib=/usr/local/lib
so 文件存在,但路径不对
现在的版本,默认路径都能找得到 so 库。这个 Hadoop “Unable to load native-hadoop library for your platform” warning 里面介绍的大部分方法,都是在教怎么设置路径。真实原因很少会因为路径不对,不过这个答案靠谱 https://stackoverflow.com/a/30927689 ,也就是我们的情况 3
编译的版本,在我们的 os 上依赖库不全
遇到过这种,glibc 库版本不够:
$ ldd lib/native/libhadoop.so
lib/native/libhadoop.so: /lib64/libc.so.6: version `GLIBC_2.14'
not found
(required by lib/native/libhadoop.so)
linux-vdso.so.1 => (0x00007ffd1db6d000)
/$LIB/libonion.so
=> /lib64/libonion.so
(0x00007f5bfd37d000)
libdl.so.2 => /lib64/libdl.so.2 (0x00007f5bfce40000)
libpthread.so.0 => /lib64/libpthread.so.0 (0x00007f5bfcc23000)
libc.so.6 => /lib64/libc.so.6 (0x00007f5bfc88f000)
/lib64/ld-linux-x86-64.so.2 (0x00007f5bfd266000)
$ strings
/lib64/libc.so.6 |grep GLIBC_
可以看当前系统支持哪些版本的 glibc
但是 glibc 安装升级有风险,如果要安装 2.14 版本务必先做好测试。
hdfs 集群出现 missing block,无非就是 namenode 里还记录的 block 元数据信息,但是所有副本都丢失了。如果是同时挂了多个机器,或者损坏了多个机器上的磁盘,是有可能会出现。
遇到过 2 次人为产生 missing blocks:
kill 一个 datanode 进程,就出现 missing block
先设置所有文件的 replication 为 1,一小段时间后,再设置为 2
这两种情况都算是 bug,对应的文件确实无法 get 下来了。但第 1 中情况还好,经过排除日志,发现实际这些丢失的 blocks 本就接收到了删除命令,过一段时间后,missing block 一般会自动消失。第 2 中情况,是真的意外丢 block 了,比较严重。不要轻易把 replication 设置为 1,再改回去可能丢 block。
如果确认这些 missing block 可以消除,可以通过 fsck 命令手动处理:
// 如果missing blocks数不是很多,可以直接逐个delete
hdfs fsck file_name
-delete
// 如果missing blocks较多,可以从namenode上拿到corrupt块
hdfs fsck
/ -list-corruptfileblocks
-openforwrite
| egrep
-v
'^\.+$' | egrep
"MISSING|OPENFORWRITE" | grep
-o
"/[^ ]*" | sed
-e
"s/:$//" > missing_blocks.txt
实际还有些许多问题,比如用户supergroup 权限问题、rack-aware.sh
文件缺失的问题,限于篇幅就不列举了。
问题是不断会出现的,但及时对大部分场景做到监控工具,能够提前发现问题。下面是整理并上线的关键告警指标:
datanode lastcontact
datanode 与 namenode 心跳监控。心跳时间长意味这这个 dn 没响应了,默认超过10m30s 没响应,dn会脱离集群。
namenode and datanode web probe
namenode 50070 与 datanode 50075 从外部探测,并且 datanode 会根据 include里面的地址自动增减。我们使用修改过了 telegraf http_response 插件,支持动态读取url,比如 exec bash get_datanode_urls.sh
dirctory max files
单目录下的文件数告警。hdfs默认限制单目录下最大的文件数100万,由配置项dfs.namenode.fs-limits.max-directory-items
决定。
这个指标数据来源于 fsimage 目录画像分析。
transactions not merged
standby 未滚动的editlog数。长期未checkpoint会导致下次namenode启动消耗过多内存,甚至启动失败。
missing blocks
异常blocks数
test write file
在2个namenode节点上,定期使用 hdfs put/get 写入文件。如果失败会告警
non-active namenode
hdfs集群namenode有且只有一个active,一个standby。其它情况告警
cluster capacity
集群总体容量监控
node usage, ioutil
单个 datanode 磁盘空间使用率预警,ioutil持续5分钟大于95%预警。
failover occurs
hdfs namenode发生failover
namenode heap size
namenode heap size使用比率。blocks数量多,内存使用越多。
到此,关于“怎么处理HDFS问题”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注创新互联网站,小编会继续努力为大家带来更多实用的文章!