大橙子网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
这篇文章主要为大家展示了“如何利用R语言的ggplot2包绘制PCA图”,内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研究并学习一下“如何利用R语言的ggplot2包绘制PCA图”这篇文章吧。
创新互联建站是专业的献县网站建设公司,献县接单;提供网站设计制作、成都网站设计,网页设计,网站设计,建网站,PHP网站建设等专业做网站服务;采用PHP框架,可快速的进行献县网站开发网页制作和功能扩展;专业做搜索引擎喜爱的网站,专业的做网站团队,希望更多企业前来合作!
一 载入数据集和R包
library(ggplot2)#使用经典iris数据集df <- iris[c(1, 2, 3, 4)]head(df) Sepal.Length Sepal.Width Petal.Length Petal.Width1 5.1 3.5 1.4 0.22 4.9 3.0 1.4 0.23 4.7 3.2 1.3 0.24 4.6 3.1 1.5 0.25 5.0 3.6 1.4 0.26 5.4 3.9 1.7 0.4
二 进行主成分分析
df_pca <- prcomp(df) #计算主成分df_pcs <-data.frame(df_pca$x, Species = iris$Species) head(df_pcs,3) #查看主成分结果 PC1 PC2 PC3 PC4 Species1 -2.684126 -0.3193972 0.02791483 0.002262437 setosa2 -2.714142 0.1770012 0.21046427 0.099026550 setosa3 -2.888991 0.1449494 -0.01790026 0.019968390 setosa
三 绘图展示
3.1 基础函数绘制PCA图
plot(df_pca$x[,1], df_pca$x[,2])
3.2 ggplot2 绘制PCA图
1) Species分颜色
ggplot(df_pcs,aes(x=PC1,y=PC2,color=Species))+ geom_point()
2)去掉背景及网格线
ggplot(df_pcs,aes(x=PC1,y=PC2,color=Species))+ geom_point()+ theme_bw() +theme(panel.border=element_blank(),panel.grid.major=element_blank(),panel.grid.minor=element_blank(),axis.line= element_line(colour = "black"))
3) 添加PC1 PC2的百分比
percentage<-round(df_pca$sdev / sum(df_pca$sdev) * 100,2)percentage<-paste(colnames(df_pcs),"(", paste(as.character(percentage), "%", ")", sep=""))ggplot(df_pcs,aes(x=PC1,y=PC2,color=Species))+geom_point()+ xlab(percentage[1]) +ylab(percentage[2])
4) 添加置信椭圆
ggplot(df_pcs,aes(x=PC1,y=PC2,color = Species))+ geom_point()+stat_ellipse(level = 0.95, show.legend = F) + annotate('text', label = 'setosa', x = -2, y = -1.25, size = 5, colour = '#f8766d') +annotate('text', label = 'versicolor', x = 0, y = - 0.5, size = 5, colour = '#00ba38') +annotate('text', label = 'virginica', x = 3, y = 0.5, size = 5, colour = '#619cff')
5) 查看各变量对于PCA的贡献
df_r <- as.data.frame(df_pca$rotation)df_r$feature <- row.names(df_r)df_r PC1 PC2 PC3 PC4 featureSepal.Length 0.36138659 -0.65658877 0.58202985 0.3154872 Sepal.LengthSepal.Width -0.08452251 -0.73016143 -0.59791083 -0.3197231 Sepal.WidthPetal.Length 0.85667061 0.17337266 -0.07623608 -0.4798390 Petal.LengthPetal.Width 0.35828920 0.07548102 -0.54583143 0.7536574 Petal.Width
贡献度绘图
ggplot(df_r,aes(x=PC1,y=PC2,label=feature,color=feature )) + geom_point()+ geom_text(size=3)
四 PCA绘图汇总展示
ggplot(df_pcs,aes(x=PC1,y=PC2,color=Species )) + geom_point()+xlab(percentage[1]) + ylab(percentage[2]) + stat_ellipse(level = 0.95, show.legend = F) +annotate('text', label = 'setosa', x = -2, y = -1.25, size = 5, colour = '#f8766d') +annotate('text', label = 'versicolor', x = 0, y = - 0.5, size = 5, colour = '#00ba38') +annotate('text', label = 'virginica', x = 3, y = 0.5, size = 5, colour = '#619cff') + labs(title="Iris PCA Clustering", subtitle=" PC1 and PC2 principal components ", caption="Source: Iris") + theme_classic()
以上是“如何利用R语言的ggplot2包绘制PCA图”这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注创新互联行业资讯频道!