大橙子网站建设,新征程启航

为企业提供网站建设、域名注册、服务器等服务

PostgreSQL源码解读(97)-查询语句#79(ExecHashJoin函数#5-H...

本节是ExecHashJoin函数介绍的第五部分,主要介绍了ExecHashJoin中依赖的其他函数的实现逻辑,这些函数在HJ_NEED_NEW_BATCH阶段中使用,主要的函数是ExecHashJoinNewBatch。

创新互联成都网站建设按需求定制网站,是成都网站营销推广公司,为岗亭提供网站建设服务,有成熟的网站定制合作流程,提供网站定制设计服务:原型图制作、网站创意设计、前端HTML5制作、后台程序开发等。成都网站营销推广热线:18982081108

一、数据结构

JoinState
Hash/NestLoop/Merge Join的基类

/* ----------------
 *   JoinState information
 *
 *      Superclass for state nodes of join plans.
 *      Hash/NestLoop/Merge Join的基类
 * ----------------
 */
typedef struct JoinState
{
    PlanState   ps;//基类PlanState
    JoinType    jointype;//连接类型
    //在找到一个匹配inner tuple的时候,如需要跳转到下一个outer tuple,则该值为T
    bool        single_match;   /* True if we should skip to next outer tuple
                                 * after finding one inner match */
    //连接条件表达式(除了ps.qual)
    ExprState  *joinqual;       /* JOIN quals (in addition to ps.qual) */
} JoinState;

HashJoinState
Hash Join运行期状态结构体

/* these structs are defined in executor/hashjoin.h: */
typedef struct HashJoinTupleData *HashJoinTuple;
typedef struct HashJoinTableData *HashJoinTable;

typedef struct HashJoinState
{
    JoinState   js;             /* 基类;its first field is NodeTag */
    ExprState  *hashclauses;//hash连接条件
    List       *hj_OuterHashKeys;   /* 外表条件链表;list of ExprState nodes */
    List       *hj_InnerHashKeys;   /* 内表连接条件;list of ExprState nodes */
    List       *hj_HashOperators;   /* 操作符OIDs链表;list of operator OIDs */
    HashJoinTable hj_HashTable;//Hash表
    uint32      hj_CurHashValue;//当前的Hash值
    int         hj_CurBucketNo;//当前的bucket编号
    int         hj_CurSkewBucketNo;//行倾斜bucket编号
    HashJoinTuple hj_CurTuple;//当前元组
    TupleTableSlot *hj_OuterTupleSlot;//outer relation slot
    TupleTableSlot *hj_HashTupleSlot;//Hash tuple slot
    TupleTableSlot *hj_NullOuterTupleSlot;//用于外连接的outer虚拟slot
    TupleTableSlot *hj_NullInnerTupleSlot;//用于外连接的inner虚拟slot
    TupleTableSlot *hj_FirstOuterTupleSlot;//
    int         hj_JoinState;//JoinState状态
    bool        hj_MatchedOuter;//是否匹配
    bool        hj_OuterNotEmpty;//outer relation是否为空
} HashJoinState;

HashJoinTable
Hash表数据结构

typedef struct HashJoinTableData
{
    int         nbuckets;       /* 内存中的hash桶数;# buckets in the in-memory hash table */
    int         log2_nbuckets;  /* 2的对数(nbuckets必须是2的幂);its log2 (nbuckets must be a power of 2) */

    int         nbuckets_original;  /* 首次hash时的桶数;# buckets when starting the first hash */
    int         nbuckets_optimal;   /* 优化后的桶数(每个批次);optimal # buckets (per batch) */
    int         log2_nbuckets_optimal;  /* 2的对数;log2(nbuckets_optimal) */

    /* buckets[i] is head of list of tuples in i'th in-memory bucket */
    //bucket [i]是内存中第i个桶中的元组链表的head item
    union
    {
        /* unshared array is per-batch storage, as are all the tuples */
        //未共享数组是按批处理存储的,所有元组均如此
        struct HashJoinTupleData **unshared;
        /* shared array is per-query DSA area, as are all the tuples */
        //共享数组是每个查询的DSA区域,所有元组均如此
        dsa_pointer_atomic *shared;
    }           buckets;

    bool        keepNulls;      /*如不匹配则存储NULL元组,该值为T;true to store unmatchable NULL tuples */

    bool        skewEnabled;    /*是否使用倾斜优化?;are we using skew optimization? */
    HashSkewBucket **skewBucket;    /* 倾斜的hash表桶数;hashtable of skew buckets */
    int         skewBucketLen;  /* skewBucket数组大小;size of skewBucket array (a power of 2!) */
    int         nSkewBuckets;   /* 活动的倾斜桶数;number of active skew buckets */
    int        *skewBucketNums; /* 活动倾斜桶数组索引;array indexes of active skew buckets */

    int         nbatch;         /* 批次数;number of batches */
    int         curbatch;       /* 当前批次,第一轮为0;current batch #; 0 during 1st pass */

    int         nbatch_original;    /* 在开始inner扫描时的批次;nbatch when we started inner scan */
    int         nbatch_outstart;    /* 在开始outer扫描时的批次;nbatch when we started outer scan */

    bool        growEnabled;    /* 关闭nbatch增加的标记;flag to shut off nbatch increases */

    double      totalTuples;    /* 从inner plan获得的元组数;# tuples obtained from inner plan */
    double      partialTuples;  /* 通过hashjoin获得的inner元组数;# tuples obtained from inner plan by me */
    double      skewTuples;     /* 倾斜元组数;# tuples inserted into skew tuples */

    /*
     * These arrays are allocated for the life of the hash join, but only if
     * nbatch > 1.  A file is opened only when we first write a tuple into it
     * (otherwise its pointer remains NULL).  Note that the zero'th array
     * elements never get used, since we will process rather than dump out any
     * tuples of batch zero.
     * 这些数组在散列连接的生命周期内分配,但仅当nbatch > 1时分配。
     * 只有当第一次将元组写入文件时,文件才会打开(否则它的指针将保持NULL)。
     * 注意,第0个数组元素永远不会被使用,因为批次0的元组永远不会转储.
     */
    BufFile   **innerBatchFile; /* 每个批次的inner虚拟临时文件缓存;buffered virtual temp file per batch */
    BufFile   **outerBatchFile; /* 每个批次的outer虚拟临时文件缓存;buffered virtual temp file per batch */

    /*
     * Info about the datatype-specific hash functions for the datatypes being
     * hashed. These are arrays of the same length as the number of hash join
     * clauses (hash keys).
     * 有关正在散列的数据类型的特定于数据类型的散列函数的信息。
     * 这些数组的长度与散列连接子句(散列键)的数量相同。
     */
    FmgrInfo   *outer_hashfunctions;    /* outer hash函数FmgrInfo结构体;lookup data for hash functions */
    FmgrInfo   *inner_hashfunctions;    /* inner hash函数FmgrInfo结构体;lookup data for hash functions */
    bool       *hashStrict;     /* 每个hash操作符是严格?is each hash join operator strict? */

    Size        spaceUsed;      /* 元组使用的当前内存空间大小;memory space currently used by tuples */
    Size        spaceAllowed;   /* 空间使用上限;upper limit for space used */
    Size        spacePeak;      /* 峰值的空间使用;peak space used */
    Size        spaceUsedSkew;  /* 倾斜哈希表的当前空间使用情况;skew hash table's current space usage */
    Size        spaceAllowedSkew;   /* 倾斜哈希表的使用上限;upper limit for skew hashtable */

    MemoryContext hashCxt;      /* 整个散列连接存储的上下文;context for whole-hash-join storage */
    MemoryContext batchCxt;     /* 该批次存储的上下文;context for this-batch-only storage */

    /* used for dense allocation of tuples (into linked chunks) */
    //用于密集分配元组(到链接块中)
    HashMemoryChunk chunks;     /* 整个批次使用一个链表;one list for the whole batch */

    /* Shared and private state for Parallel Hash. */
    //并行hash使用的共享和私有状态
    HashMemoryChunk current_chunk;  /* 后台进程的当前chunk;this backend's current chunk */
    dsa_area   *area;           /* 用于分配内存的DSA区域;DSA area to allocate memory from */
    ParallelHashJoinState *parallel_state;//并行执行状态
    ParallelHashJoinBatchAccessor *batches;//并行访问器
    dsa_pointer current_chunk_shared;//当前chunk的开始指针
} HashJoinTableData;

typedef struct HashJoinTableData *HashJoinTable;

HashJoinTupleData
Hash连接元组数据

/* ----------------------------------------------------------------
 *              hash-join hash table structures
 *
 * Each active hashjoin has a HashJoinTable control block, which is
 * palloc'd in the executor's per-query context.  All other storage needed
 * for the hashjoin is kept in private memory contexts, two for each hashjoin.
 * This makes it easy and fast to release the storage when we don't need it
 * anymore.  (Exception: data associated with the temp files lives in the
 * per-query context too, since we always call buffile.c in that context.)
 * 每个活动的hashjoin都有一个可散列的控制块,它在执行程序的每个查询上下文中都是通过palloc分配的。
 * hashjoin所需的所有其他存储都保存在私有内存上下文中,每个hashjoin有两个。
 * 当不再需要它的时候,这使得释放它变得简单和快速。
 * (例外:与临时文件相关的数据也存在于每个查询上下文中,因为在这种情况下总是调用buffile.c。)
 *
 * The hashtable contexts are made children of the per-query context, ensuring
 * that they will be discarded at end of statement even if the join is
 * aborted early by an error.  (Likewise, any temporary files we make will
 * be cleaned up by the virtual file manager in event of an error.)
 * hashtable上下文是每个查询上下文的子上下文,确保在语句结束时丢弃它们,即使连接因错误而提前中止。
 *   (同样,如果出现错误,虚拟文件管理器将清理创建的任何临时文件。)
 *
 * Storage that should live through the entire join is allocated from the
 * "hashCxt", while storage that is only wanted for the current batch is
 * allocated in the "batchCxt".  By resetting the batchCxt at the end of
 * each batch, we free all the per-batch storage reliably and without tedium.
 * 通过整个连接的存储空间应从“hashCxt”分配,而只需要当前批处理的存储空间在“batchCxt”中分配。
 * 通过在每个批处理结束时重置batchCxt,可以可靠地释放每个批处理的所有存储,而不会感到单调乏味。
 * 
 * During first scan of inner relation, we get its tuples from executor.
 * If nbatch > 1 then tuples that don't belong in first batch get saved
 * into inner-batch temp files. The same statements apply for the
 * first scan of the outer relation, except we write tuples to outer-batch
 * temp files.  After finishing the first scan, we do the following for
 * each remaining batch:
 *  1. Read tuples from inner batch file, load into hash buckets.
 *  2. Read tuples from outer batch file, match to hash buckets and output.
 * 在内部关系的第一次扫描中,从执行者那里得到了它的元组。
 * 如果nbatch > 1,那么不属于第一批的元组将保存到批内临时文件中。
 * 相同的语句适用于外关系的第一次扫描,但是我们将元组写入外部批处理临时文件。
 * 完成第一次扫描后,我们对每批剩余的元组做如下处理: 
 * 1.从内部批处理文件读取元组,加载到散列桶中。
 * 2.从外部批处理文件读取元组,匹配哈希桶和输出。 
 *
 * It is possible to increase nbatch on the fly if the in-memory hash table
 * gets too big.  The hash-value-to-batch computation is arranged so that this
 * can only cause a tuple to go into a later batch than previously thought,
 * never into an earlier batch.  When we increase nbatch, we rescan the hash
 * table and dump out any tuples that are now of a later batch to the correct
 * inner batch file.  Subsequently, while reading either inner or outer batch
 * files, we might find tuples that no longer belong to the current batch;
 * if so, we just dump them out to the correct batch file.
 * 如果内存中的哈希表太大,可以动态增加nbatch。
 * 散列值到批处理的计算是这样安排的:
 *   这只会导致元组进入比以前认为的更晚的批处理,而不会进入更早的批处理。
 * 当增加nbatch时,重新扫描哈希表,并将现在属于后面批处理的任何元组转储到正确的内部批处理文件。
 * 随后,在读取内部或外部批处理文件时,可能会发现不再属于当前批处理的元组;
 *   如果是这样,只需将它们转储到正确的批处理文件即可。
 * ----------------------------------------------------------------
 */

/* these are in nodes/execnodes.h: */
/* typedef struct HashJoinTupleData *HashJoinTuple; */
/* typedef struct HashJoinTableData *HashJoinTable; */

typedef struct HashJoinTupleData
{
    /* link to next tuple in same bucket */
    //link同一个桶中的下一个元组
    union
    {
        struct HashJoinTupleData *unshared;
        dsa_pointer shared;
    }           next;
    uint32      hashvalue;      /* 元组的hash值;tuple's hash code */
    /* Tuple data, in MinimalTuple format, follows on a MAXALIGN boundary */
}           HashJoinTupleData;

#define HJTUPLE_OVERHEAD  MAXALIGN(sizeof(HashJoinTupleData))
#define HJTUPLE_MINTUPLE(hjtup)  \
    ((MinimalTuple) ((char *) (hjtup) + HJTUPLE_OVERHEAD))

二、源码解读

ExecHashJoinNewBatch
切换到新的hashjoin批次,如成功,则返回T;已完成,返回F



/*----------------------------------------------------------------------------------------------------
                                    HJ_FILL_OUTER_TUPLE 阶段
----------------------------------------------------------------------------------------------------*/
//参见ExecHashJoin

/*----------------------------------------------------------------------------------------------------
                                    HJ_FILL_INNER_TUPLES 阶段
----------------------------------------------------------------------------------------------------*/
//参见ExecHashJoin

/*----------------------------------------------------------------------------------------------------
                                    HJ_NEED_NEW_BATCH 阶段
----------------------------------------------------------------------------------------------------*/
/*
 * ExecHashJoinNewBatch
 *      switch to a new hashjoin batch
 *      切换到新的hashjoin批次
 *
 * Returns true if successful, false if there are no more batches.
 * 如成功,则返回T;已完成,返回F
 */
static bool
ExecHashJoinNewBatch(HashJoinState *hjstate)
{
    HashJoinTable hashtable = hjstate->hj_HashTable;//Hash表
    int         nbatch;//批次数
    int         curbatch;//当前批次
    BufFile    *innerFile;//inner relation缓存文件
    TupleTableSlot *slot;//slot
    uint32      hashvalue;//hash值

    nbatch = hashtable->nbatch;
    curbatch = hashtable->curbatch;

    if (curbatch > 0)
    {
        /*
         * We no longer need the previous outer batch file; close it right
         * away to free disk space.
         * 不再需要以前的外批处理文件;关闭它以释放磁盘空间。
         */
        if (hashtable->outerBatchFile[curbatch])
            BufFileClose(hashtable->outerBatchFile[curbatch]);
        hashtable->outerBatchFile[curbatch] = NULL;
    }
    else                        /* curbatch ==0,刚刚完成了第一个批次;we just finished the first batch */
    {
        /*
         * Reset some of the skew optimization state variables, since we no
         * longer need to consider skew tuples after the first batch. The
         * memory context reset we are about to do will release the skew
         * hashtable itself.
         * 重置一些倾斜优化状态变量,因为在第一批之后我们不再需要考虑倾斜元组。
         * 我们将要进行的内存上下文重置将释放倾斜散链表本身。
         */
        hashtable->skewEnabled = false;
        hashtable->skewBucket = NULL;
        hashtable->skewBucketNums = NULL;
        hashtable->nSkewBuckets = 0;
        hashtable->spaceUsedSkew = 0;
    }

    /*
     * We can always skip over any batches that are completely empty on both
     * sides.  We can sometimes skip over batches that are empty on only one
     * side, but there are exceptions:
     * 可以跳过任何两边都是空的批次。有时我们可以跳过只在一侧为空的批处理,但也有例外:
     *
     * 1. In a left/full outer join, we have to process outer batches even if
     * the inner batch is empty.  Similarly, in a right/full outer join, we
     * have to process inner batches even if the outer batch is empty.
     * 1、在左/全外连接中,即使内部批是空的,我们也必须处理外批数据。
     *    类似地,在右/完整外部连接中,即使外批数据为空,也必须处理内批数据。
     *
     * 2. If we have increased nbatch since the initial estimate, we have to
     * scan inner batches since they might contain tuples that need to be
     * reassigned to later inner batches.
     * 2、如果在初始估算之后增加了nbatch,必须扫描内部批处理,
     *   因为它们可能包含需要重新分配到后面的内部批处理的元组。
     *
     * 3. Similarly, if we have increased nbatch since starting the outer
     * scan, we have to rescan outer batches in case they contain tuples that
     * need to be reassigned.
     * 3、类似地,如果在开始外部扫描之后增加了nbatch,必须重新扫描外部批处理,
     *   以防它们包含需要重新分配的元组。
     */
    curbatch++;
    while (curbatch < nbatch &&
           (hashtable->outerBatchFile[curbatch] == NULL ||
            hashtable->innerBatchFile[curbatch] == NULL))
    {
        if (hashtable->outerBatchFile[curbatch] &&
            HJ_FILL_OUTER(hjstate))
            break;              /* 符合规则1,需要处理;must process due to rule 1 */
        if (hashtable->innerBatchFile[curbatch] &&
            HJ_FILL_INNER(hjstate))
            break;              /* 符合规则1,需要处理;must process due to rule 1 */
        if (hashtable->innerBatchFile[curbatch] &&
            nbatch != hashtable->nbatch_original)
            break;              /* 符合规则2,需要处理;must process due to rule 2 */
        if (hashtable->outerBatchFile[curbatch] &&
            nbatch != hashtable->nbatch_outstart)
            break;              /* 符合规则3,需要处理;must process due to rule 3 */
        /* We can ignore this batch. */
        /* Release associated temp files right away. */
        //均不符合规则1-3,则可以忽略这个批次了
        //释放临时文件
        if (hashtable->innerBatchFile[curbatch])
            BufFileClose(hashtable->innerBatchFile[curbatch]);
        hashtable->innerBatchFile[curbatch] = NULL;
        if (hashtable->outerBatchFile[curbatch])
            BufFileClose(hashtable->outerBatchFile[curbatch]);
        hashtable->outerBatchFile[curbatch] = NULL;
        curbatch++;//下一个批次
    }

    if (curbatch >= nbatch)
        return false;           /* 已完成处理所有批次;no more batches */

    hashtable->curbatch = curbatch;//下一个批次

    /*
     * Reload the hash table with the new inner batch (which could be empty)
     * 使用新的内部批处理数据(有可能是空的)重新加载哈希表
     */
    ExecHashTableReset(hashtable);//重置Hash表
    //inner relation文件
    innerFile = hashtable->innerBatchFile[curbatch];
    //批次文件不为NULL
    if (innerFile != NULL)
    {
        if (BufFileSeek(innerFile, 0, 0L, SEEK_SET))//扫描innerFile,不成功,则报错
            ereport(ERROR,
                    (errcode_for_file_access(),
                     errmsg("could not rewind hash-join temporary file: %m")));

        while ((slot = ExecHashJoinGetSavedTuple(hjstate,
                                                 innerFile,
                                                 &hashvalue,
                                                 hjstate->hj_HashTupleSlot)))//
        {
            /*
             * NOTE: some tuples may be sent to future batches.  Also, it is
             * possible for hashtable->nbatch to be increased here!
             * 注意:一些元组可能被发送到未来的批次中。
             * 另外,这里也可以增加hashtable->nbatch !
             */
            ExecHashTableInsert(hashtable, slot, hashvalue);
        }

        /*
         * after we build the hash table, the inner batch file is no longer
         * needed
         * 构建哈希表之后,内部批处理临时文件就不再需要了,关闭之
         */
        BufFileClose(innerFile);
        hashtable->innerBatchFile[curbatch] = NULL;
    }

    /*
     * Rewind outer batch file (if present), so that we can start reading it.
     */
    if (hashtable->outerBatchFile[curbatch] != NULL)
    {
        if (BufFileSeek(hashtable->outerBatchFile[curbatch], 0, 0L, SEEK_SET))
            ereport(ERROR,
                    (errcode_for_file_access(),
                     errmsg("could not rewind hash-join temporary file: %m")));
    }

    return true;
}


/*
 * ExecHashJoinGetSavedTuple
 *      read the next tuple from a batch file.  Return NULL if no more.
 *      从批次文件中读取下一个元组,如无则返回NULL
 *
 * On success, *hashvalue is set to the tuple's hash value, and the tuple
 * itself is stored in the given slot.
 * 如成功,*hashvalue参数设置为元组的Hash值,元组存储在给定的slot中
 */
static TupleTableSlot *
ExecHashJoinGetSavedTuple(HashJoinState *hjstate,
                          BufFile *file,
                          uint32 *hashvalue,
                          TupleTableSlot *tupleSlot)
{
    uint32      header[2];
    size_t      nread;
    MinimalTuple tuple;

    /*
     * We check for interrupts here because this is typically taken as an
     * alternative code path to an ExecProcNode() call, which would include
     * such a check.
     * 在这里检查中断,因为这通常被作为ExecProcNode()调用的替代代码路径,通常包含这样的检查。
     */
    CHECK_FOR_INTERRUPTS();

    /*
     * Since both the hash value and the MinimalTuple length word are uint32,
     * we can read them both in one BufFileRead() call without any type
     * cheating.
     * 因为哈希值和最小长度字都是uint32,所以可以在一个BufFileRead()调用中读取它们,
     *   而不需要任何类型的cheating。
     */
    nread = BufFileRead(file, (void *) header, sizeof(header));//读取文件
    if (nread == 0)             /* end of file */
    {
        //已读取完毕,返回NULL
        ExecClearTuple(tupleSlot);
        return NULL;
    }
    if (nread != sizeof(header))//读取的大小不等于header的大小,报错
        ereport(ERROR,
                (errcode_for_file_access(),
                 errmsg("could not read from hash-join temporary file: %m")));
    //hash值
    *hashvalue = header[0];
    //tuple,分配的内存大小为MinimalTuple结构体大小
    tuple = (MinimalTuple) palloc(header[1]);
    //元组大小
    tuple->t_len = header[1];
    //读取文件
    nread = BufFileRead(file,
                        (void *) ((char *) tuple + sizeof(uint32)),
                        header[1] - sizeof(uint32));
    //读取有误,报错
    if (nread != header[1] - sizeof(uint32))
        ereport(ERROR,
                (errcode_for_file_access(),
                 errmsg("could not read from hash-join temporary file: %m")));
    //存储到slot中
    ExecForceStoreMinimalTuple(tuple, tupleSlot, true);
    return tupleSlot;//返回slot
}


 /*
 * ExecHashTableInsert
 *      insert a tuple into the hash table depending on the hash value
 *      it may just go to a temp file for later batches
 *      根据哈希值向哈希表中插入一个tuple,它可能只是转到一个临时文件中以供以后的批处理
 *
 * Note: the passed TupleTableSlot may contain a regular, minimal, or virtual
 * tuple; the minimal case in particular is certain to happen while reloading
 * tuples from batch files.  We could save some cycles in the regular-tuple
 * case by not forcing the slot contents into minimal form; not clear if it's
 * worth the messiness required.
 * 注意:传递的TupleTableSlot可能包含一个常规、最小或虚拟元组;
 *   在从批处理文件中重新加载元组时,肯定会出现最小的情况。
 * 如为常规元组,可以通过不强制slot内容变成最小形式来节省一些处理时间;
 *   但不清楚这样的混乱是否值得。
 */
void
ExecHashTableInsert(HashJoinTable hashtable,
                    TupleTableSlot *slot,
                    uint32 hashvalue)
{
    bool        shouldFree;//是否释放资源
    MinimalTuple tuple = ExecFetchSlotMinimalTuple(slot, &shouldFree);//获取一个MinimalTuple
    int         bucketno;//桶号
    int         batchno;//批次号

    ExecHashGetBucketAndBatch(hashtable, hashvalue,
                              &bucketno, &batchno);//获取桶号和批次号

    /*
     * decide whether to put the tuple in the hash table or a temp file
     * 判断是否放到hash表中还是放到临时文件中
     */
    if (batchno == hashtable->curbatch)
    {
        //批次号==hash表的批次号,放到hash表中
        /*
         * put the tuple in hash table
         * 把元组放到hash表中
         */
        HashJoinTuple hashTuple;//hash tuple
        int         hashTupleSize;//大小
        double      ntuples = (hashtable->totalTuples - hashtable->skewTuples);//常规元组数量

        /* Create the HashJoinTuple */
        //创建HashJoinTuple
        hashTupleSize = HJTUPLE_OVERHEAD + tuple->t_len;//大小
        hashTuple = (HashJoinTuple) dense_alloc(hashtable, hashTupleSize);//分配存储空间
        //hash值
        hashTuple->hashvalue = hashvalue;
        //拷贝数据
        memcpy(HJTUPLE_MINTUPLE(hashTuple), tuple, tuple->t_len);

        /*
         * We always reset the tuple-matched flag on insertion.  This is okay
         * even when reloading a tuple from a batch file, since the tuple
         * could not possibly have been matched to an outer tuple before it
         * went into the batch file.
         * 我们总是在插入时重置元组匹配的标志。
         * 即使在从批处理文件中重新加载元组时,这也是可以的,
         *   因为在元组进入批处理文件之前,它不可能与外部元组匹配。
         */
        HeapTupleHeaderClearMatch(HJTUPLE_MINTUPLE(hashTuple));

        /* Push it onto the front of the bucket's list */
        //
        hashTuple->next.unshared = hashtable->buckets.unshared[bucketno];
        hashtable->buckets.unshared[bucketno] = hashTuple;

        /*
         * Increase the (optimal) number of buckets if we just exceeded the
         * NTUP_PER_BUCKET threshold, but only when there's still a single
         * batch.
         * 如果刚刚超过了NTUP_PER_BUCKET阈值,但是只有在仍然有单个批处理时,
         *  才增加桶的(优化后)数量。
         */
        if (hashtable->nbatch == 1 &&
            ntuples > (hashtable->nbuckets_optimal * NTUP_PER_BUCKET))
        {
            //只有1个批次而且元组数大于桶数*每桶的元组数
            /* Guard against integer overflow and alloc size overflow */
            //确保整数不要溢出
            if (hashtable->nbuckets_optimal <= INT_MAX / 2 &&
                hashtable->nbuckets_optimal * 2 <= MaxAllocSize / sizeof(HashJoinTuple))
            {
                hashtable->nbuckets_optimal *= 2;
                hashtable->log2_nbuckets_optimal += 1;
            }
        }

        /* Account for space used, and back off if we've used too much */
        //声明使用的存储空间,如果使用太多,需要回退
        hashtable->spaceUsed += hashTupleSize;
        if (hashtable->spaceUsed > hashtable->spacePeak)
            hashtable->spacePeak = hashtable->spaceUsed;//超出峰值,则跳转
        if (hashtable->spaceUsed +
            hashtable->nbuckets_optimal * sizeof(HashJoinTuple)
            > hashtable->spaceAllowed)
            ExecHashIncreaseNumBatches(hashtable);//超出允许的空间,则增加批次
    }
    else
    {
        //不在这个批次中
        /*
         * put the tuple into a temp file for later batches
         * 放在临时文件中以便后续处理(减少重复扫描)
         */
        Assert(batchno > hashtable->curbatch);
        ExecHashJoinSaveTuple(tuple,
                              hashvalue,
                              &hashtable->innerBatchFile[batchno]);//存储tuple到临时文件中
    }

    if (shouldFree)//如需要释放空间,则处理之
        heap_free_minimal_tuple(tuple);
}

三、跟踪分析

设置work_mem为较低的值(1MB),便于手工产生批次

testdb=# set work_mem='1MB';
SET
testdb=# show work_mem;
 work_mem 
----------
 1MB
(1 row)

测试脚本如下

testdb=# set enable_nestloop=false;
SET
testdb=# set enable_mergejoin=false;
SET
testdb=# explain verbose select dw.*,grjf.grbh,grjf.xm,grjf.ny,grjf.je 
testdb-# from t_dwxx dw,lateral (select gr.grbh,gr.xm,jf.ny,jf.je 
testdb(#                         from t_grxx gr inner join t_jfxx jf 
testdb(#                                        on gr.dwbh = dw.dwbh 
testdb(#                                           and gr.grbh = jf.grbh) grjf
testdb-# order by dw.dwbh;
                                          QUERY PLAN                                           
-----------------------------------------------------------------------------------------------
 Sort  (cost=14828.83..15078.46 rows=99850 width=47)
   Output: dw.dwmc, dw.dwbh, dw.dwdz, gr.grbh, gr.xm, jf.ny, jf.je
   Sort Key: dw.dwbh
   ->  Hash Join  (cost=3176.00..6537.55 rows=99850 width=47)
         Output: dw.dwmc, dw.dwbh, dw.dwdz, gr.grbh, gr.xm, jf.ny, jf.je
         Hash Cond: ((gr.grbh)::text = (jf.grbh)::text)
         ->  Hash Join  (cost=289.00..2277.61 rows=99850 width=32)
               Output: dw.dwmc, dw.dwbh, dw.dwdz, gr.grbh, gr.xm
               Inner Unique: true
               Hash Cond: ((gr.dwbh)::text = (dw.dwbh)::text)
               ->  Seq Scan on public.t_grxx gr  (cost=0.00..1726.00 rows=100000 width=16)
                     Output: gr.dwbh, gr.grbh, gr.xm, gr.xb, gr.nl
               ->  Hash  (cost=164.00..164.00 rows=10000 width=20)
                     Output: dw.dwmc, dw.dwbh, dw.dwdz
                     ->  Seq Scan on public.t_dwxx dw  (cost=0.00..164.00 rows=10000 width=20)
                           Output: dw.dwmc, dw.dwbh, dw.dwdz
         ->  Hash  (cost=1637.00..1637.00 rows=100000 width=20)
               Output: jf.ny, jf.je, jf.grbh
               ->  Seq Scan on public.t_jfxx jf  (cost=0.00..1637.00 rows=100000 width=20)
                     Output: jf.ny, jf.je, jf.grbh
(20 rows)

启动gdb,设置断点,进入ExecHashJoinNewBatch

(gdb) b ExecHashJoinNewBatch
Breakpoint 1 at 0x7031f5: file nodeHashjoin.c, line 943.
(gdb) c
Continuing.

Breakpoint 1, ExecHashJoinNewBatch (hjstate=0x1c40738) at nodeHashjoin.c:943
943     HashJoinTable hashtable = hjstate->hj_HashTable;

获取批次数(8个批次)和当前批次(0,第一个批次)

(gdb) n
950     nbatch = hashtable->nbatch;
(gdb) 
951     curbatch = hashtable->curbatch;
(gdb) 
953     if (curbatch > 0)
(gdb) p nbatch
$5 = 8
(gdb) p curbatch
$6 = 0

curbatch ==0,刚刚完成了第一个批次,重置倾斜优化的相关状态变量

(gdb) n
971         hashtable->skewEnabled = false;
(gdb) 
972         hashtable->skewBucket = NULL;
(gdb) 
973         hashtable->skewBucketNums = NULL;
(gdb) 
974         hashtable->nSkewBuckets = 0;
(gdb) 
975         hashtable->spaceUsedSkew = 0;
(gdb) 
995     curbatch++;

外表为空或内表为空时的优化,本次调用均不为空

(gdb) n
996     while (curbatch < nbatch &&
(gdb) 
997            (hashtable->outerBatchFile[curbatch] == NULL ||
(gdb) p hashtable->outerBatchFile[curbatch]
$7 = (BufFile *) 0x1d85290
(gdb) p hashtable->outerBatchFile[curbatch]
$8 = (BufFile *) 0x1d85290

设置当前批次,重建Hash表

(gdb) 
1023        if (curbatch >= nbatch)
(gdb) 
1026        hashtable->curbatch = curbatch;
(gdb) 
1031        ExecHashTableReset(hashtable);

获取inner relation批次临时文件

(gdb) 
1033        innerFile = hashtable->innerBatchFile[curbatch];
(gdb) 
1035        if (innerFile != NULL)
(gdb) p innerFile
$9 = (BufFile *) 0x1cc0540

临时文件不为NULL,读取文件

(gdb) n
1037            if (BufFileSeek(innerFile, 0, 0L, SEEK_SET))
(gdb) 
1042            while ((slot = ExecHashJoinGetSavedTuple(hjstate,

进入函数ExecHashJoinGetSavedTuple

(gdb) step
ExecHashJoinGetSavedTuple (hjstate=0x1c40fd8, file=0x1cc0540, hashvalue=0x7ffeace60824, tupleSlot=0x1c4cc20)
    at nodeHashjoin.c:1259
1259        CHECK_FOR_INTERRUPTS();
(gdb) 

ExecHashJoinGetSavedTuple->读取头部8个字节(header,类型为void *,在64 bit的机器上,大小8个字节)

gdb) n
1266        nread = BufFileRead(file, (void *) header, sizeof(header));
(gdb) 
1267        if (nread == 0)             /* end of file */
(gdb) p nread
$10 = 8
(gdb) n
1272        if (nread != sizeof(header))
(gdb) 

ExecHashJoinGetSavedTuple->获取Hash值(1978434688)

(gdb) 
1276        *hashvalue = header[0];
(gdb) n
1277        tuple = (MinimalTuple) palloc(header[1]);
(gdb) p *hashvalue
$11 = 1978434688

ExecHashJoinGetSavedTuple->获取tuple&元组长度

(gdb) n
1278        tuple->t_len = header[1];
(gdb) 
1281                            header[1] - sizeof(uint32));
(gdb) p tuple->t_len
$16 = 24
(gdb) p *tuple
$17 = {t_len = 24, mt_padding = "\177\177\177\177\177\177", t_infomask2 = 32639, t_infomask = 32639, t_hoff = 127 '\177', 
  t_bits = 0x1c5202f "\177\177\177\177\177\177\177\177\177~\177\177\177\177\177\177\177"}
(gdb) 

ExecHashJoinGetSavedTuple->根据大小读取文件获取元组

(gdb) n
1279        nread = BufFileRead(file,
(gdb) 
1282        if (nread != header[1] - sizeof(uint32))
(gdb) p header[1]
$18 = 24
(gdb) p sizeof(uint32)
$19 = 4
(gdb) p *tuple
$20 = {t_len = 24, mt_padding = "\000\000\000\000\000", t_infomask2 = 3, t_infomask = 2, t_hoff = 24 '\030', 
  t_bits = 0x1c5202f ""}

ExecHashJoinGetSavedTuple->存储到slot中,完成调用

(gdb) n
1286        return ExecStoreMinimalTuple(tuple, tupleSlot, true);
(gdb) 
1287    }
(gdb) 
ExecHashJoinNewBatch (hjstate=0x1c40fd8) at nodeHashjoin.c:1051
1051                ExecHashTableInsert(hashtable, slot, hashvalue);

插入到Hash表中

(gdb) 
1051                ExecHashTableInsert(hashtable, slot, hashvalue);

进入ExecHashTableInsert

(gdb) step
ExecHashTableInsert (hashtable=0x1c6e1c0, slot=0x1c4cc20, hashvalue=3757101760) at nodeHash.c:1593
1593        MinimalTuple tuple = ExecFetchSlotMinimalTuple(slot);
(gdb) 

ExecHashTableInsert->获取批次号和hash桶号

(gdb) n
1597        ExecHashGetBucketAndBatch(hashtable, hashvalue,
(gdb) 
1603        if (batchno == hashtable->curbatch)
(gdb) p batchno
$21 = 1
(gdb) p bucketno
$22 = 21184
(gdb) 
(gdb) p hashtable->curbatch
$23 = 1

ExecHashTableInsert->批次号与Hash表中的批次号一致,把元组放到Hash表中
常规元组数量=100000

(gdb) n
1610            double      ntuples = (hashtable->totalTuples - hashtable->skewTuples);
(gdb) n
1613            hashTupleSize = HJTUPLE_OVERHEAD + tuple->t_len;
(gdb) p ntuples
$24 = 100000

ExecHashTableInsert->创建HashJoinTuple,重置元组匹配标记

(gdb) n
1614            hashTuple = (HashJoinTuple) dense_alloc(hashtable, hashTupleSize);
(gdb) 
1616            hashTuple->hashvalue = hashvalue;
(gdb) 
1617            memcpy(HJTUPLE_MINTUPLE(hashTuple), tuple, tuple->t_len);
(gdb) 
1625            HeapTupleHeaderClearMatch(HJTUPLE_MINTUPLE(hashTuple));
(gdb) 

ExecHashTableInsert->元组放在Hash表桶链表的前面

(gdb) n
1628            hashTuple->next.unshared = hashtable->buckets.unshared[bucketno];
(gdb) 
1629            hashtable->buckets.unshared[bucketno] = hashTuple;
(gdb) 
1636            if (hashtable->nbatch == 1 &&
(gdb) 

ExecHashTableInsert->调整或记录Hash表内存使用的峰值并返回,回到ExecHashJoinNewBatch

(gdb) 
1649            hashtable->spaceUsed += hashTupleSize;
(gdb) 
...
(gdb) 
1667    }
(gdb) n
ExecHashJoinNewBatch (hjstate=0x1c40fd8) at nodeHashjoin.c:1042
1042            while ((slot = ExecHashJoinGetSavedTuple(hjstate,

循环插入到Hash表中

1042            while ((slot = ExecHashJoinGetSavedTuple(hjstate,
(gdb) n
1051                ExecHashTableInsert(hashtable, slot, hashvalue);
...

DONE!

四、参考资料

Hash Joins: Past, Present and Future/PGCon 2017
A Look at How Postgres Executes a Tiny Join - Part 1
A Look at How Postgres Executes a Tiny Join - Part 2
Assignment 2 Symmetric Hash Join


网站栏目:PostgreSQL源码解读(97)-查询语句#79(ExecHashJoin函数#5-H...
文章地址:http://dzwzjz.com/article/jdhhog.html
在线咨询
服务热线
服务热线:028-86922220
TOP