大橙子网站建设,新征程启航

为企业提供网站建设、域名注册、服务器等服务

怎样使用TPU训练模型

今天就跟大家聊聊有关怎样使用TPU训练模型,可能很多人都不太了解,为了让大家更加了解,小编给大家总结了以下内容,希望大家根据这篇文章可以有所收获。

让客户满意是我们工作的目标,不断超越客户的期望值来自于我们对这个行业的热爱。我们立志把好的技术通过有效、简单的方式提供给客户,将通过不懈努力成为客户在信息化领域值得信任、有价值的长期合作伙伴,公司提供的服务项目有:国际域名空间、网页空间、营销软件、网站建设、青山网站维护、网站推广。

如果想尝试使用Google Colab上的TPU来训练模型,也是非常方便,仅需添加6行代码。

在Colab笔记本中:修改->笔记本设置->硬件加速器 中选择 TPU

注:以下代码只能在Colab 上才能正确执行。

可通过以下colab链接测试效果《tf_TPU》:

https://colab.research.google.com/drive/1XCIhATyE1R7lq6uwFlYlRsUr5d9_-r1s

%tensorflow_version 2.x
import tensorflow as tf
print(tf.__version__)
from tensorflow.keras import *  

一,准备数据

MAX_LEN = 300
BATCH_SIZE = 32
(x_train,y_train),(x_test,y_test) = datasets.reuters.load_data()
x_train = preprocessing.sequence.pad_sequences(x_train,maxlen=MAX_LEN)
x_test = preprocessing.sequence.pad_sequences(x_test,maxlen=MAX_LEN)

MAX_WORDS = x_train.max()+1
CAT_NUM = y_train.max()+1

ds_train = tf.data.Dataset.from_tensor_slices((x_train,y_train)) \
          .shuffle(buffer_size = 1000).batch(BATCH_SIZE) \
          .prefetch(tf.data.experimental.AUTOTUNE).cache()

ds_test = tf.data.Dataset.from_tensor_slices((x_test,y_test)) \
          .shuffle(buffer_size = 1000).batch(BATCH_SIZE) \
          .prefetch(tf.data.experimental.AUTOTUNE).cache()

二,定义模型

tf.keras.backend.clear_session()
def create_model():

    model = models.Sequential()

    model.add(layers.Embedding(MAX_WORDS,7,input_length=MAX_LEN))
    model.add(layers.Conv1D(filters = 64,kernel_size = 5,activation = "relu"))
    model.add(layers.MaxPool1D(2))
    model.add(layers.Conv1D(filters = 32,kernel_size = 3,activation = "relu"))
    model.add(layers.MaxPool1D(2))
    model.add(layers.Flatten())
    model.add(layers.Dense(CAT_NUM,activation = "softmax"))
    return(model)

def compile_model(model):
    model.compile(optimizer=optimizers.Nadam(),
                loss=losses.SparseCategoricalCrossentropy(from_logits=True),
                metrics=[metrics.SparseCategoricalAccuracy(),metrics.SparseTopKCategoricalAccuracy(5)]) 
    return(model)

三,训练模型

#增加以下6行代码
import os
resolver = tf.distribute.cluster_resolver.TPUClusterResolver(tpu='grpc://' + os.environ['COLAB_TPU_ADDR'])
tf.config.experimental_connect_to_cluster(resolver)
tf.tpu.experimental.initialize_tpu_system(resolver)
strategy = tf.distribute.experimental.TPUStrategy(resolver)
with strategy.scope():
    model = create_model()
    model.summary()
    model = compile_model(model)

怎样使用TPU训练模型

怎样使用TPU训练模型

history = model.fit(ds_train,validation_data = ds_test,epochs = 10)

怎样使用TPU训练模型

看完上述内容,你们对怎样使用TPU训练模型有进一步的了解吗?如果还想了解更多知识或者相关内容,请关注创新互联行业资讯频道,感谢大家的支持。


标题名称:怎样使用TPU训练模型
标题路径:http://dzwzjz.com/article/jgjcgj.html
在线咨询
服务热线
服务热线:028-86922220
TOP