大橙子网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
这篇文章主要介绍“spark streaming窗口聚合操作后怎么管理offset”,在日常操作中,相信很多人在spark streaming窗口聚合操作后怎么管理offset问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”spark streaming窗口聚合操作后怎么管理offset”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!
闻喜网站制作公司哪家好,找创新互联!从网页设计、网站建设、微信开发、APP开发、成都响应式网站建设公司等网站项目制作,到程序开发,运营维护。创新互联从2013年开始到现在10年的时间,我们拥有了丰富的建站经验和运维经验,来保证我们的工作的顺利进行。专注于网站建设就选创新互联。
对于spark streaming来说窗口操作之后,是无法管理offset的,因为offset的存储于HasOffsetRanges。只有kafkaRDD继承了他,所以假如我们对KafkaRDD进行了转化之后就无法再获取offset了。
还有窗口之后的offset的管理,也是很麻烦的,主要原因就是窗口操作会包含若干批次的RDD数据,那么提交offset我们只需要提交最近的那个批次的kafkaRDD的offset即可。如何获取呢?
对于spark 来说代码执行位置分为driver和executor,我们希望再driver端获取到offset,在处理完结果提交offset,或者直接与结果一起管理offset。
说到driver端执行,其实我们只需要使用transform获取到offset信息,然后在输出操作foreachrdd里面使用提交即可。
package bigdata.spark.SparkStreaming.kafka010
import java.util.Properties
import org.apache.kafka.clients.consumer.{Consumer, ConsumerRecord, KafkaConsumer}
import org.apache.kafka.common.TopicPartition
import org.apache.kafka.common.serialization.StringDeserializer
import org.apache.spark.rdd.RDD
import org.apache.spark.streaming.kafka010._
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.{SparkConf, TaskContext}
import scala.collection.JavaConverters._
import scala.collection.mutable
object kafka010NamedRDD {
def main(args: Array[String]) {
// 创建一个批处理时间是2s的context 要增加环境变量
val sparkConf = new SparkConf().setAppName("DirectKafkaWordCount").setMaster("local[*]")
val ssc = new StreamingContext(sparkConf, Seconds(5))
ssc.checkpoint("/opt/checkpoint")
// 使用broker和topic创建DirectStream
val topicsSet = "test".split(",").toSet
val kafkaParams = Map[String, Object]("bootstrap.servers" -> "mt-mdh.local:9093",
"key.deserializer"->classOf[StringDeserializer],
"value.deserializer"-> classOf[StringDeserializer],
"group.id"->"test4",
"auto.offset.reset" -> "latest",
"enable.auto.commit"->(false: java.lang.Boolean))
// 没有接口提供 offset
val messages = KafkaUtils.createDirectStream[String, String](
ssc,
LocationStrategies.PreferConsistent,
ConsumerStrategies.Subscribe[String, String](topicsSet, kafkaParams,getLastOffsets(kafkaParams ,topicsSet)))//
var A:mutable.HashMap[String,Array[OffsetRange]] = new mutable.HashMap()
val trans = messages.transform(r =>{
val offsetRanges = r.asInstanceOf[HasOffsetRanges].offsetRanges
A += ("rdd1"->offsetRanges)
r
}).countByWindow(Seconds(10), Seconds(5))
trans.foreachRDD(rdd=>{
if(!rdd.isEmpty()){
val offsetRanges = A.get("rdd1").get//.asInstanceOf[HasOffsetRanges].offsetRanges
rdd.foreachPartition { iter =>
val o: OffsetRange = offsetRanges(TaskContext.get.partitionId)
println(s"${o.topic} ${o.partition} ${o.fromOffset} ${o.untilOffset}")
}
println(rdd.count())
println(offsetRanges)
// 手动提交offset ,前提是禁止自动提交
messages.asInstanceOf[CanCommitOffsets].commitAsync(offsetRanges)
}
// A.-("rdd1")
})
// 启动流
ssc.start()
ssc.awaitTermination()
}
def getLastOffsets(kafkaParams : Map[String, Object],topics:Set[String]): Map[TopicPartition, Long] ={
val props = new Properties()
props.putAll(kafkaParams.asJava)
val consumer = new KafkaConsumer[String, String](props)
consumer.subscribe(topics.asJavaCollection)
paranoidPoll(consumer)
val map = consumer.assignment().asScala.map { tp =>
println(tp+"---" +consumer.position(tp))
tp -> (consumer.position(tp))
}.toMap
println(map)
consumer.close()
map
}
def paranoidPoll(c: Consumer[String, String]): Unit = {
val msgs = c.poll(0)
if (!msgs.isEmpty) {
// position should be minimum offset per topicpartition
msgs.asScala.foldLeft(Map[TopicPartition, Long]()) { (acc, m) =>
val tp = new TopicPartition(m.topic, m.partition)
val off = acc.get(tp).map(o => Math.min(o, m.offset)).getOrElse(m.offset)
acc + (tp -> off)
}.foreach { case (tp, off) =>
c.seek(tp, off)
}
}
}
}
到此,关于“spark streaming窗口聚合操作后怎么管理offset”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注创新互联网站,小编会继续努力为大家带来更多实用的文章!