大橙子网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
这篇文章给大家介绍Python中怎么预测缺失值,内容非常详细,感兴趣的小伙伴们可以参考借鉴,希望对大家能有所帮助。
成都创新互联长期为超过千家客户提供的网站建设服务,团队从业经验10年,关注不同地域、不同群体,并针对不同对象提供差异化的产品和服务;打造开放共赢平台,与合作伙伴共同营造健康的互联网生态环境。为修文企业提供专业的网站建设、成都网站设计,修文网站改版等技术服务。拥有10余年丰富建站经验和众多成功案例,为您定制开发。
import pandas as pd df = pd.read_csv("winemag-data-130k-v2.csv")
接下来,让我们输出前五行数据:
print(df.head())
让我们从这些数据中随机抽取500条记录。这将有助于加快模型训练和测试,尽管读者可以很容易地对其进行修改:
import pandas as pd df = pd.read_csv("winemag-data-130k-v2.csv").sample(n=500https://my.oschina.net/u/4253699/blog/, random_state = 42)
现在,让我们打印与数据对应的信息,这将使我们了解哪些列缺少值:
print(df.info())
有几个列的非空值小于500,这与缺少的值相对应。首先,让我们考虑建立一个模型,用“points”来估算缺失的“price”值。首先,让我们打印“price”和“points”之间的相关性:
print("Correlation: "https://my.oschina.net/u/4253699/blog/, df['points'].corr(df['price']))
我们看到了一个微弱的正相关。让我们建立一个线性回归模型,用“points”来预测“price”。首先,让我们从“scikit learn”导入“LinearRegresssion”模块:
from sklearn.linear_model import LinearRegression
现在,让我们为训练和测试拆分数据。我们希望能够预测缺失值,但我们应该使用真实值“price”来验证我们的预测。让我们通过只选择正价格值来筛选缺少的值:
import numpy as np df_filter = df[df['price'] > 0].copy()
我们还可以初始化用于存储预测和实际值的列表:
y_pred = [] y_true = []
我们将使用K-fold交叉验证来验证我们的模型。让我们从“scikit learn”导入“KFolds”模块。我们将使用10折来验证我们的模型:
from sklearn.model_selection import KFold kf = KFold(n_splits=10https://my.oschina.net/u/4253699/blog/, random_state = 42) for train_indexhttps://my.oschina.net/u/4253699/blog/, test_index in kf.split(df_filter): df_test = df_filter.iloc[test_index] df_train = df_filter.iloc[train_index]
我们现在可以定义我们的输入和输出:
for train_indexhttps://my.oschina.net/u/4253699/blog/, test_index in kf.split(df_filter): ... X_train = np.array(df_train['points']).reshape(-1https://my.oschina.net/u/4253699/blog/, 1) y_train = np.array(df_train['price']).reshape(-1https://my.oschina.net/u/4253699/blog/, 1) X_test = np.array(df_test['points']).reshape(-1https://my.oschina.net/u/4253699/blog/, 1) y_test = np.array(df_test['price']).reshape(-1https://my.oschina.net/u/4253699/blog/, 1)
并拟合我们的线性回归模型:
for train_indexhttps://my.oschina.net/u/4253699/blog/, test_index in kf.split(df_filter): ... model = LinearRegression() model.fit(X_trainhttps://my.oschina.net/u/4253699/blog/, y_train)
现在让我们生成并存储我们的预测:
for train_indexhttps://my.oschina.net/u/4253699/blog/, test_index in kf.split(df_filter): ... y_pred.append(model.predict(X_test)[0]) y_true.append(y_test[0])
现在让我们评估一下模型的性能。让我们用均方误差来评估模型的性能:
print("Mean Square Error: "https://my.oschina.net/u/4253699/blog/, mean_squared_error(y_truehttps://my.oschina.net/u/4253699/blog/, y_pred))
并不太好。我们可以通过训练平均价格加上一个标准差来改善这一点:
df_filter = df[df['price'] <= df['price'].mean() + df['price'].std() ].copy() ... print("Mean Square Error: "https://my.oschina.net/u/4253699/blog/, mean_squared_error(y_truehttps://my.oschina.net/u/4253699/blog/, y_pred))
虽然这大大提高了性能,但其代价是无法准确估算葡萄酒的price。与使用单一特征的回归模型预测价格不同,我们可以使用树基模型,例如随机森林模型,它可以处理类别和数值变量。
让我们建立一个随机森林回归模型,使用“country”、“province”、“variety”、“winery”和“points”来预测葡萄酒的“price”。首先,让我们将分类变量转换为可由随机森林模型处理的分类代码:
df['country_cat'] = df['country'].astype('category') df['country_cat'] = df['country_cat'].cat.codes df['province_cat'] = df['province'].astype('category') df['province_cat'] = df['province_cat'].cat.codes df['winery_cat'] = df['winery'].astype('category') df['winery_cat'] = df['winery_cat'].cat.codes df['variety_cat'] = df['variety'].astype('category') df['variety_cat'] = df['variety_cat'].cat.codes
让我们将随机样本大小增加到5000:
df = pd.read_csv("winemag-data-130k-v2.csv").sample(n=5000https://my.oschina.net/u/4253699/blog/, random_state = 42)
接下来,让我们从scikit learn导入随机森林回归器模块。我们还可以定义用于训练模型的特征列表:
from sklearn.ensemble import RandomForestRegressor features = ['points'https://my.oschina.net/u/4253699/blog/, 'country_cat'https://my.oschina.net/u/4253699/blog/, 'province_cat'https://my.oschina.net/u/4253699/blog/, 'winery_cat'https://my.oschina.net/u/4253699/blog/, 'variety_cat']
让我们用一个随机森林来训练我们的模型,它有1000个估计量,最大深度为1000。然后,让我们生成预测并将其附加到新列表中:
for train_indexhttps://my.oschina.net/u/4253699/blog/, test_index in kf.split(df_filter): df_test = df_filter.iloc[test_index] df_train = df_filter.iloc[train_index] X_train = np.array(df_train[features]) y_train = np.array(df_train['price']) X_test = np.array(df_test[features]) y_test = np.array(df_test['price']) model = RandomForestRegressor(n_estimators = 1000https://my.oschina.net/u/4253699/blog/, max_depth = 1000https://my.oschina.net/u/4253699/blog/, random_state = 42) model.fit(X_trainhttps://my.oschina.net/u/4253699/blog/, y_train) y_pred_rf.append(model.predict(X_test)[0]) y_true_rf.append(y_test[0])
最后,让我们评估随机森林和线性回归模型的均方误差:
print("Mean Square Error (Linear Regression): "https://my.oschina.net/u/4253699/blog/, mean_squared_error(y_truehttps://my.oschina.net/u/4253699/blog/, y_pred)) print("Mean Square Error (Random Forest): "https://my.oschina.net/u/4253699/blog/, mean_squared_error(y_pred_rfhttps://my.oschina.net/u/4253699/blog/, y_true_rf))
我们看到随机森林模型具有优越的性能。现在,让我们使用我们的模型预测缺失的价格值,并显示price预测:
df_missing = df[df['price'].isnull()].copy() X_test_lr = np.array(df_missing['points']).reshape(-1https://my.oschina.net/u/4253699/blog/, 1) X_test_rf = np.array(df_missing[features]) X_train_lr = np.array(df_filter['points']).reshape(-1https://my.oschina.net/u/4253699/blog/, 1) y_train_lr = np.array(df_filter['price']).reshape(-1https://my.oschina.net/u/4253699/blog/, 1) X_train_rf = np.array(df_filter[features]) y_train_rf = np.array(df_filter['price']) model_lr = LinearRegression() model_lr.fit(X_train_lrhttps://my.oschina.net/u/4253699/blog/, y_train_lr) print("Linear regression predictions: "https://my.oschina.net/u/4253699/blog/, model_lr.predict(X_test_lr)[0][0]) model_rf = RandomForestRegressor(n_estimators = 1000https://my.oschina.net/u/4253699/blog/, max_depth = 1000https://my.oschina.net/u/4253699/blog/, random_state = 42) model_rf.fit(X_train_rfhttps://my.oschina.net/u/4253699/blog/, y_train_rf) print("Random forests regression predictions: "https://my.oschina.net/u/4253699/blog/, model_rf.predict(X_test_rf)[0])
我就到此为止,但我鼓励你尝试一下特征选择和超参数调整,看看是否可以提高性能。此外,我鼓励你扩展此数据进行插补模型,以填补“region_1”和“designation”等分类字段中的缺失值。在这里,你可以构建一个基于树的分类模型,根据分类和数值特征来预测所列类别的缺失值。
关于Python中怎么预测缺失值就分享到这里了,希望以上内容可以对大家有一定的帮助,可以学到更多知识。如果觉得文章不错,可以把它分享出去让更多的人看到。