大橙子网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
Spark 于 2009 年诞生于加州大学伯克利分校 AMPLab,2013 年被捐赠给 Apache 软件基金会,2014 年 2 月成为 Apache 的顶级项目。相对于 MapReduce 的批处理计算,Spark 可以带来上百倍的性能提升,因此它成为继 MapReduce 之后,最为广泛使用的分布式计算框架。
创新互联建站-专业网站定制、快速模板网站建设、高性价比永城网站开发、企业建站全套包干低至880元,成熟完善的模板库,直接使用。一站式永城网站制作公司更省心,省钱,快速模板网站建设找我们,业务覆盖永城地区。费用合理售后完善,十余年实体公司更值得信赖。
Apache Spark 具有以下特点:
Term(术语) | Meaning(含义) |
---|---|
Application | Spark 应用程序,由集群上的一个 Driver 节点和多个 Executor 节点组成。 |
Driver program | 主运用程序,该进程运行应用的 main() 方法并且创建 SparkContext |
Cluster manager | 集群资源管理器(例如,Standlone Manager,Mesos,YARN) |
Worker node | 执行计算任务的工作节点 |
Executor | 位于工作节点上的应用进程,负责执行计算任务并且将输出数据保存到内存或者磁盘中 |
Task | 被发送到 Executor 中的工作单元 |
执行过程:
Spark 基于 Spark Core 扩展了四个核心组件,分别用于满足不同领域的计算需求。
Spark SQL 主要用于结构化数据的处理。其具有以下特点:
Spark Streaming 主要用于快速构建可扩展,高吞吐量,高容错的流处理程序。支持从 HDFS,Flume,Kafka,Twitter 和 ZeroMQ 读取数据,并进行处理。
Spark Streaming 的本质是微批处理,它将数据流进行极小粒度的拆分,拆分为多个批处理,从而达到接近于流处理的效果。
MLlib 是 Spark 的机器学习库。其设计目标是使得机器学习变得简单且可扩展。它提供了以下工具:
GraphX 是 Spark 中用于图形计算和图形并行计算的新组件。在高层次上,GraphX 通过引入一个新的图形抽象来扩展 RDD(一种具有附加到每个顶点和边缘的属性的定向多重图形)。为了支持图计算,GraphX 提供了一组基本运算符(如: subgraph,joinVertices 和 aggregateMessages)以及优化后的 Pregel API。此外,GraphX 还包括越来越多的图形算法和构建器,以简化图形分析任务。
更多大数据系列文章可以参见 GitHub 开源项目: 大数据入门指南