大橙子网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
前言
成都创新互联公司主营铜陵网站建设的网络公司,主营网站建设方案,app开发定制,铜陵h5成都微信小程序搭建,铜陵网站营销推广欢迎铜陵等地区企业咨询
终于来到比较复杂的HashMap,由于内部的变量,内部类,方法都比较多,没法像ArrayList那样直接平铺开来说,因此准备从几个具体的角度来切入。
桶结构
HashMap的每个存储位置,又叫做一个桶,当一个Key&Value进入map的时候,依据它的hash值分配一个桶来存储。
看一下桶的定义:table就是所谓的桶结构,说白了就是一个节点数组。
transient Node[] table; transient int size;
节点
HashMap是一个map结构,它不同于Collection结构,不是存储单个对象,而是存储键值对。
因此内部最基本的存储单元是节点:Node。
节点的定义如下:
class Nodeimplements Map.Entry { final int hash; final K key; V value; Node next; }
可见节点除了存储key,vaue,hash三个值之外,还有一个next指针,这样一样,多个Node可以形成一个单向列表。这是解决hash冲突的一种方式,如果多个节点被分配到同一个桶,可以组成一个链表。
HashMap内部还有另一种节点类型,叫做TreeNode:
class TreeNodeextends LinkedHashMap.Entry { TreeNode parent; // red-black tree links TreeNode left; TreeNode right; TreeNode prev; // needed to unlink next upon deletion boolean red; }
TreeNode是从Node继承的,它可以组成一棵红黑树。为什么还有这个东东呢?上面说过,如果节点的被哈希到同一个桶,那么可能导致链表特别长,这样一来访问效率就会急剧下降。 此时如果key是可比较的(实现了Comparable接口),HashMap就将这个链表转成一棵平衡二叉树,来挽回一些效率。在实际使用中,我们期望这种现象永远不要发生。
有了这个知识,就可以看看HashMap几个相关常量定义了:
static final int TREEIFY_THRESHOLD = 8; static final int UNTREEIFY_THRESHOLD = 6; static final int MIN_TREEIFY_CAPACITY = 64;
put方法:Key&Value
插入接口:
public V put(K key, V value) { return putVal(hash(key), key, value, false, true); } final int hash(Object key) { int h; return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16); }
put方法调用了私有方法putVal,不过值得注意的是,key的hash值不是直接用的hashCode,最终的hash=(hashCode右移16)^ hashCode。
在将hash值映射为桶位置的时候,取的是hash值的低位部分,这样如果有一批key的仅高位部分不一致,就会聚集的同一个桶里面。(如果桶数量比较少,key是Float类型,且是连续的整数,就会出现这种case)。
执行插入的过程:
V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) { Node[] tab; Node p; int n, i; if ((tab = table) == null || (n = tab.length) == 0) n = (tab = resize()).length; //代码段1 if ((p = tab[i = (n - 1) & hash]) == null) tab[i] = newNode(hash, key, value, null); else { Node e; K k; //代码段2 if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k)))) e = p; //代码段3 else if (p instanceof TreeNode) e = ((TreeNode )p).putTreeVal(this, tab, hash, key, value); else { //代码段4 for (int binCount = 0; ; ++binCount) { //代码段4.1 if ((e = p.next) == null) { p.next = newNode(hash, key, value, null); if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st treeifyBin(tab, hash); break; } //代码段4.2 if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) break; p = e; } } //代码段5 if (e != null) { // existing mapping for key V oldValue = e.value; if (!onlyIfAbsent || oldValue == null) e.value = value; afterNodeAccess(e); return oldValue; } } //代码段6 ++modCount; if (++size > threshold) resize(); afterNodeInsertion(evict); return null; }
remove方法
了解了put方法,remove方法就容易了,直接讲解私有方法removeNode吧。
public V remove(Object key) { Nodee; return (e = removeNode(hash(key), key, null, false, true)) == null ? null : e.value; } Node removeNode(int hash, Object key, Object value, boolean matchValue, boolean movable) { Node [] tab; Node p; int n, index; //代码段1 if ((tab = table) != null && (n = tab.length) > 0 && (p = tab[index = (n - 1) & hash]) != null) { //代码段2: Node node = null, e; K k; V v; if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k)))) node = p; //代码段3: else if ((e = p.next) != null) { //代码段3.1: if (p instanceof TreeNode) node = ((TreeNode )p).getTreeNode(hash, key); else { //代码段3.2: do { if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) { node = e; break; } p = e; } while ((e = e.next) != null); } } //代码段4: if (node != null && (!matchValue || (v = node.value) == value || (value != null && value.equals(v)))) { //代码段4.1: if (node instanceof TreeNode) ((TreeNode )node).removeTreeNode(this, tab, movable); //代码段4.2: else if (node == p) tab[index] = node.next; //代码段4.3: else p.next = node.next; ++modCount; --size; afterNodeRemoval(node); return node; } } return null; }
rehash
rehash就是重新分配桶,并将原有的节点重新hash到新的桶位置。
先看两个和桶的数量相关的成员变量
final float loadFactor; int threshold;
桶的扩展策略,见下面的函数,如果需要的容量是cap,真实扩展的容量是大于cap的一个2的冥次。
这样依赖,每次扩展,增加的容量都是2的倍数。
static final int tableSizeFor(int cap) { int n = cap - 1; n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16; return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1; }
这是具体的扩展逻辑
Node[] resize() { //此处省略了计算newCap的逻辑 Node [] newTab = (Node [])new Node[newCap]; table = newTab; if (oldTab != null) { for (int j = 0; j < oldCap; ++j) { Node e; if ((e = oldTab[j]) != null) { oldTab[j] = null; //分支1 if (e.next == null) newTab[e.hash & (newCap - 1)] = e; //分支2 else if (e instanceof TreeNode) ((TreeNode )e).split(this, newTab, j, oldCap); //分支3 else { // preserve order //此处省略了链表拆分逻辑 } } } return newTab; }
由于新桶的数量是旧桶的2的倍数,所以每个旧桶都能对应2个或更多的新桶,互不干扰。 所以上面的迁移逻辑,并不需要检查新桶里面是否有节点。
可见,rehash的代价是很大的,最好在初始化的时候,能够设定一个合适的容量,避免rehash。
最后,虽然上面的代码没有体现,在HashMap的生命周期内,桶的数量只会增加,不会减少。
迭代器
所有迭代器的核心就是这个HashIterator
abstract class HashIterator { Nodenext; // next entry to return Node current; // current entry int expectedModCount; // for fast-fail int index; // current slot final Node nextNode() { Node [] t; Node e = next; if (modCount != expectedModCount) throw new ConcurrentModificationException(); if (e == null) throw new NoSuchElementException(); if ((next = (current = e).next) == null && (t = table) != null) { do {} while (index < t.length && (next = t[index++]) == null); } return e; } }
简单起见,只保留了next部分的代码。原理很简单,next指向下一个节点,肯定处在某个桶当中(桶的位置是index)。那么如果同一个桶还有其他节点,那么一定可以顺着next.next来找到,无论这是一个链表还是一棵树。否则扫描下一个桶。
有了上面的节点迭代器,其他用户可见的迭代器都是通过它来实现的。
final class KeyIterator extends HashIterator implements Iterator{ public final K next() { return nextNode().key; } } final class ValueIterator extends HashIterator implements Iterator { public final V next() { return nextNode().value; } } final class EntryIterator extends HashIterator implements Iterator > { public final Map.Entry next() { return nextNode(); } }
视图
KeySet的部分代码:这并不是一个独立的Set,而是一个视图,它的接口内部访问的都是HashMap的数据。
final class KeySet extends AbstractSet{ public final int size() { return size; } public final void clear() { HashMap.this.clear(); } public final Iterator iterator() { return new KeyIterator(); } public final boolean contains(Object o) { return containsKey(o); } public final boolean remove(Object key) { return removeNode(hash(key), key, null, false, true) != null; } }
EntrySet、Values和KeySet也是类似的,不再赘述。
要点总结
1、key&value存储在节点中;
2、节点有可能是链表节点,也有可能是树节点;
3、依据key哈希值给节点分配桶;
4、如果桶里面有多个节点,那么要么形成一个链表,要么形成一颗树;
5、装载因子限制的了节点和桶的数量比例,必要时会扩展桶的数量;
6、桶数量必然是2的冥次,重新分配桶的过程叫做rehash,这是很昂贵的操作;
总结
以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对创新互联的支持。