大橙子网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
本篇内容介绍了“Java回溯法怎么实现”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!
北安ssl适用于网站、小程序/APP、API接口等需要进行数据传输应用场景,ssl证书未来市场广阔!成为创新互联公司的ssl证书销售渠道,可以享受市场价格4-6折优惠!如果有意向欢迎电话联系或者加微信:028-86922220(备注:SSL证书合作)期待与您的合作!
回溯法思路的简单描述是:把问题的解空间转化成了图或者树的结构表示,然后使用深度优先搜索策略进行遍历,遍历的过程中记录和寻找所有可行解或者最优解。
基本思想类同于:
图的深度优先搜索
二叉树的后序遍历
详细的描述则为:
回溯法按深度优先策略搜索问题的解空间树。首先从根节点出发搜索解空间树,当算法搜索至解空间树的某一节点时,先利用剪枝函数判断该节点是否可行(即能得到问题的解)。如果不可行,则跳过对该节点为根的子树的搜索,逐层向其祖先节点回溯;否则,进入该子树,继续按深度优先策略搜索。
回溯法的基本行为是搜索,搜索过程使用剪枝函数来为了避免无效的搜索。剪枝函数包括两类:1. 使用约束函数,剪去不满足约束条件的路径;2.使用限界函数,剪去不能得到最优解的路径。
问题的关键在于如何定义问题的解空间,转化成树(即解空间树)。解空间树分为两种:子集树和排列树。两种在算法结构和思路上大体相同。
回溯法的实现方法有两种:递归和递推(也称迭代)。一般来说,一个问题两种方法都可以实现,只是在算法效率和设计复杂度上有区别。
【类比于图深度遍历的递归实现和非递归(递推)实现】
思路简单,设计容易,但效率低,其设计范式如下:
void backtrack (int t) { if (t>n) output(x); //叶子节点,输出结果,x是可行解 else for i = 1 to k//当前节点的所有子节点 { x[t]=value(i); //每个子节点的值赋值给x //满足约束条件和限界条件 if (constraint(t)&&bound(t)) backtrack(t+1); //递归下一层 } }
void iterativeBacktrack () { int t=1; while (t>0) { if(ExistSubNode(t)) //当前节点的存在子节点 { for i = 1 to k //遍历当前节点的所有子节点 { x[t]=value(i);//每个子节点的值赋值给x if (constraint(t)&&bound(t))//满足约束条件和限界条件 { //solution表示在节点t处得到了一个解 if (solution(t)) output(x);//得到问题的一个可行解,输出 else t++;//没有得到解,继续向下搜索 } } } else //不存在子节点,返回上一层 { t--; } } }
“Java回溯法怎么实现”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识可以关注创新互联网站,小编将为大家输出更多高质量的实用文章!