大橙子网站建设,新征程启航

为企业提供网站建设、域名注册、服务器等服务

mysql流失率怎么写,流失率表格

软件开发的一般流程是什么?_?

软件开发流程分为: 需求确认——概要设计——详细设计——编码——单元测试——集成测试——系统测试——维护

创新互联是一家专注于网站设计制作、成都网站制作与策划设计,禹王台网站建设哪家好?创新互联做网站,专注于网站建设10多年,网设计领域的专业建站公司;建站业务涵盖:禹王台等地区。禹王台做网站价格咨询:18982081108

软件开发是一项包括需求捕捉、需求分析、设计、实现和测试的系统工程。软件一般是用某种程序设计语言来实现的。通常采用软件开发工具可以进行开发。软件分为系统软件和应用软件,并不只是包括可以在计算机上运行的程序,与这些程序相关的文件一般也被认为是软件的一部分。

软件设计思路和方法的一般过程,包括设计软件的功能和实现的算法和方法、软件的总体结构设计和模块设计、编程和调试、程序联调和测试以及编写、提交程序。

扩展资料

软件开发方面的工作。具体可分为以下方面:

1 可视化编程掌握程序设计方法及可视化技术,精通一种可视化平台及其软件开发技术。获取Delphi程序员系列、Java初级或VB开发能手认证。 就业方向:企业、政府、社区、各类学校等可视化编程程序员。

2 WEB应用程序设计 具有美工基础和网页动画设计能力,掌握交互式网页程序的设计技术,能进行网站建设和维护。获取Macromedia多媒体互动设计师或Delphi初级程序员或Delphi快速网络开发工程师认证。 就业方向:企业、政府、社区、各类学校等WEB应用程序员。

3 软件测试 掌握软件测试的基本原理、方法和组织管理,精通软件测试工具。获取ATA软件测试工程师或Delphi初级程序员或Java初级程序员认证。 就业方向:企业、政府、社区、各类学校等软件测试员。

4 数据库管理 能应用关系范式进行数据库设计,精通SQL语言,胜任数据库服务器管理与应用工作。获取Oracle数据库管理或SQL Server数据库应用或Windows XP应用认证。 就业方向:企业、政府、社区、各类学校等部门的中、大型数据库管理员。

5 图形图像制作 精通国际上流行的图形/图像制作工具(如CorelDraw、Photoshop、Pagemaker等)。获取平面设计师相关的认证。 就业方向:广告制作公司、建筑设计公司、包装装璜设计公司、居室装修公司、出版印刷公司。

参考资料来源:百度百科-软件开发

目前网上商城系统哪个好用?

为了选择一个靠谱的商城系统,可以把这几方面做一个参考:

1、运营模式

企业可以根据自身发展情况选择合适的运营模式。通常而言,电商平台的运营模式都会从单一模式逐步向多元化演变,大部分企业会以自营模式或混合模式为基础,在平台的发展过程中不断衍生出更多的形态。

2、开发语言及数据库

就当前来说,市面上电商软件开发技术主要以java、php、.net开发语言为主。从编程语言特性来看,.net语言不支持跨平台操作;php语言安全稳定性不高;java技术应用广泛,安全性能、跨平台性好。因而推荐考虑java开发的电商平台。

在数据库方面主要以MySQL、SQLServer、Oracle为主,它们都有着各自的优势与不足,MySQL易用、免费、开源,但属于轻量级的数据库;SQLServer便捷、灵活,但不支持跨平台操作;Oracle兼容性强、安全稳定,但成本支出较高。所以建议挑选一款支持多数据库的软件产品,以满足企业不同的部署需求。当然,在开发语言和数据库选择上更多的应该以企业技术团队熟悉哪种开发语言和数据库为考虑。

3、安全及稳定性

一般评判一款软件好坏会从操作便利性、安全稳定性、是否满足需求等三个方面来做考虑。由于网络电商平台不同于其他平台,平台内大量资金及交易数据一旦遭受攻击,其破坏性可能是致命的,因此我们挑选一款安全可靠的商城系统是必不可少的。为避免此类问题出现,我们可以在挑选系统时通过网络搜索引擎进行相关了解。这里推荐一些相关查询平台:站长网、ICP备案信息查询。

4、二次开发

市场环境变幻莫测,一般商城平台需要不停的在功能上进行扩展、维护,而二次开发是实现这些功能的基础。所以,我们在挑选软件产品时需要了解该商城系统是否采用的是成熟的、主流的、资料丰富的框架或组件来开发的;除外,我们还应该注意源代码是否严格遵循JavaEE标准开发规范,因为源代码的规范、优雅程度决定着软件后续二次开发的难易程度。

5、功能支持

由于涉足电商领域行业众多,企业需要结合自身需求选取一些实用功能作为基础,更多的去关注产品的可拓展性,是否采用高扩展性插件设计,拥有丰富的第三方扩展应用。商城系统在功能方面支持多种模块,例如:商品管理、营销、多语言、第三方登录、第三方支付、物流查询等。一般而言,多种支付方式对消费者而言,能够根据自己的需求来选择支付方式,安全方便,能在最大程度上满足消费者的支付要求;另外,商城系统中包含众多的营销插件,比如满减、满折、优惠券、积分兑换、赠品等,企业可以通过这些插件为平台获取更多客源,从而形成规模效益;而第三方快捷登录方式则可以省去繁琐的用户注册步骤,有效降低商城会员流失率,为商城注入更多新活力。

易族智汇javashop商城系统开发拥有十几年的经验,专业的技术团队,先后为国内外多家大型企业提供电商解决方案、定制服务和技术支持。

外行人的大数据五问 带你了解大数据

外行人的大数据五问 带你了解大数据

大数据是什么?是一种运营模式,是一种能力,还是一种技术,或是一种数据集合的统称?今天我们所说的“大数据”和过去传统意义上的“数据”的区别又在哪里?大数据有什么特点?来源有哪些?又应用于哪些方面等等。接下来小编带您一起了解大数据。

大数据概念

"大数据"是一个体量特别大,数据类别特别大的数据集,并且这样的数据集无法用传统数据库工具对其内容进行抓取、管理和处理。 "大数据"首先是指数据体量(volumes)?大,指代大型数据集,一般在10TB?规模左右,但在实际应用中,很多企业用户把多个数据集放在一起,已经形成了PB级的数据量;其次是指数据类别(variety)大,数据来自多种数据源,数据种类和格式日渐丰富,已冲破了以前所限定的结构化数据范畴,囊括了半结构化和非结构化数据。接着是数据处理速度(Velocity)快,在数据量非常庞大的情况下,也能够做到数据的实时处理。最后一个特点是指数据真实性(Veracity)高,随着社交数据、企业内容、交易与应用数据等新数据源的兴趣,传统数据源的局限被打破,企业愈发需要有效的信息之力以确保其真实性及安全性。

百度知道—大数据概念

大数据(bigdata),或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。大数据的4V特点:Volume、Velocity、Variety、Veracity。

互联网周刊—大数据概念

"大数据"的概念远不止大量的数据(TB)和处理大量数据的技术,或者所谓的"4个V"之类的简单概念,而是涵盖了人们在大规模数据的基础上可以做的事情,而这些事情在小规模数据的基础上是无法实现的。换句话说,大数据让我们以一种前所未有的方式,通过对海量数据进行分析,获得有巨大价值的产品和服务,或深刻的洞见,最终形成变革之力

研究机构Gartner—大数据概念

"大数据"是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。从数据的类别上看,"大数据"指的是无法使用传统流程或工具处理或分析的信息。它定义了那些超出正常处理范围和大小、迫使用户采用非传统处理方法的数据集。 亚马逊网络服务(AWS)、大数据科学家JohnRauser提到一个简单的定义:大数据就是任何超过了一台计算机处理能力的庞大数据量。 研发小组对大数据的定义:"大数据是最大的宣传技术、是最时髦的技术,当这种现象出现时,定义就变得很混乱。" Kelly说:"大数据是可能不包含所有的信息,但我觉得大部分是正确的。对大数据的一部分认知在于,它是如此之大,分析它需要多个工作负载,这是AWS的定义。当你的技术达到极限时,也就是数据的极限"。 大数据不是关于如何定义,最重要的是如何使用。最大的挑战在于哪些技术能更好的使用数据以及大数据的应用情况如何。这与传统的数据库相比,开源的大数据分析工具的如Hadoop的崛起,这些非结构化的数据服务的价值在哪里。

大数据分析

众所周知,大数据已经不简简单单是数据大的事实了,而最重要的现实是对大数据进行分析,只有通过分析才能获取很多智能的,深入的,有价值的信息。那么越来越多的应用涉及到大数据,而这些大数据的属性,包括数量,速度,多样性等等都是呈现了大数据不断增长的复杂性,所以大数据的分析方法在大数据领域就显得尤为重要,可以说是决定最终信息是否有价值的决定性因素。基于如此的认识,大数据分析普遍存在的方法理论有哪些呢?

大数据技术

数据采集:ETL工具负责将分布的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础。

数据存取:关系数据库、NOSQL、SQL等。

基础架构:云存储、分布式文件存储等。

数据处理:自然语言处理(NLP,NaturalLanguageProcessing)是研究人与计算机交互的语言问题的一门学科。处理自然语言的关键是要让计算机"理解"自然语言,所以自然语言处理又叫做自然语言理解(NLU,NaturalLanguage Understanding),也称为计算语言学(Computational Linguistics。一方面它是语言信息处理的一个分支,另一方面它是人工智能(AI, Artificial Intelligence)的核心课题之一。

统计分析:假设检验、显著性检验、差异分析、相关分析、T检验、方差分析、卡方分析、偏相关分析、距离分析、回归分析、简单回归分析、多元回归分析、逐步回归、回归预测与残差分析、岭回归、logistic回归分析、曲线估计、因子分析、聚类分析、主成分分析、因子分析、快速聚类法与聚类法、判别分析、对应分析、多元对应分析(最优尺度分析)、bootstrap技术等等。

数据挖掘:分类 (Classification)、估计(Estimation)、预测(Prediction)、相关性分组或关联规则(Affinity grouping or association rules)、聚类(Clustering)、描述和可视化、Description and Visualization)、复杂数据类型挖掘(Text, Web ,图形图像,视频,音频等)

模型预测:预测模型、机器学习、建模仿真。

结果呈现:云计算、标签云、关系图等。

大数据特点

要理解大数据这一概念,首先要从"大"入手,"大"是指数据规模,大数据一般指在10TB(1TB=1024GB)规模以上的数据量。大数据同过去的海量数据有所区别,其基本特征可以用4个V来总结(Vol-ume、Variety、Value和Veloc-ity),即体量大、多样性、价值密度低、速度快。

第一,数据体量巨大。从TB级别,跃升到PB级别。

第二,数据类型繁多,如前文提到的网络日志、视频、图片、地理位置信息,等等。

第三,价值密度低。以视频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒。

第四,处理速度快。1秒定律。最后这一点也是和传统的数据挖掘技术有着本质的不同。物联网、云计算、移动互联网、车联网、手机、平板电脑、PC以及遍布地球各个角落的各种各样的传感器,无一不是数据来源或者承载的方式。

大数据技术是指从各种各样类型的巨量数据中,快速获得有价值信息的技术。解决大数据问题的核心是大数据技术。目前所说的"大数据"不仅指数据本身的规模,也包括采集数据的工具、平台和数据分析系统。大数据研发目的是发展大数据技术并将其应用到相关领域,通过解决巨量数据处理问题促进其突破性发展。因此,大数据时代带来的挑战不仅体现在如何处理巨量数据从中获取有价值的信息,也体现在如何加强大数据技术研发,抢占时代发展的前沿。

当下我国大数据研发建设应在以下四个方面着力

一是建立一套运行机制。大数据建设是一项有序的、动态的、可持续发展的系统工程,必须建立良好的运行机制,以促进建设过程中各个环节的正规有序,实现统合,搞好顶层设计。

二是规范一套建设标准。没有标准就没有系统。应建立面向不同主题、覆盖各个领域、不断动态更新的大数据建设标准,为实现各级各类信息系统的网络互连、信息互通、资源共享奠定基础。

三是搭建一个共享平台。数据只有不断流动和充分共享,才有生命力。应在各专用数据库建设的基础上,通过数据集成,实现各级各类指挥信息系统的数据交换和数据共享。

四是培养一支专业队伍。大数据建设的每个环节都需要依靠专业人员完成,因此,必须培养和造就一支懂指挥、懂技术、懂管理的大数据建设专业队伍。

大数据作用

大数据时代到来,认同这一判断的人越来越多。那么大数据意味着什么,他到底会改变什么?仅仅从技术角度回答,已不足以解惑。大数据只是宾语,离开了人这个主语,它再大也没有意义。我们需要把大数据放在人的背景中加以透视,理解它作为时代变革力量的所以然。

变革价值的力量

未来十年,决定中国是不是有大智慧的核心意义标准(那个"思想者"),就是国民幸福。一体现在民生上,通过大数据让有意义的事变得澄明,看我们在人与人关系上,做得是否比以前更有意义;二体现在生态上,通过大数据让有意义的事变得澄明,看我们在天与人关系上,做得是否比以前更有意义。总之,让我们从前10年的意义混沌时代,进入未来10年意义澄明时代。

变革经济的力量

生产者是有价值的,消费者是价值的意义所在。有意义的才有价值,消费者不认同的,就卖不出去,就实现不了价值;只有消费者认同的,才卖得出去,才实现得了价值。大数据帮助我们从消费者这个源头识别意义,从而帮助生产者实现价值。这就是启动内需的原理。

变革组织的力量

随着具有语义网特征的数据基础设施和数据资源发展起来,组织的变革就越来越显得不可避免。大数据将推动网络结构产生无组织的组织力量。最先反映这种结构特点的,是各种各样去中心化的WEB2.0应用,如RSS、维基、博客等。

大数据之所以成为时代变革力量,在于它通过追随意义而获得智慧。

大数据处理

大数据处理数据时代理念的三大转变:要全体不要抽样,要效率不要绝对精确,要相关不要因果。

大数据处理的流程

具体的大数据处理方法确实有很多,但是根据笔者长时间的实践,总结了一个普遍适用的大数据处理流程,并且这个流程应该能够对大家理顺大数据的处理有所帮助。整个处理流程可以概括为四步,分别是采集、导入和预处理、统计和分析,最后是数据挖掘。

大数据处理之一:采集

大数据的采集是指利用多个数据库来接收发自客户端(Web、App或者传感器形式等)的数据,并且用户可以通过这些数据库来进行简单的查询和处理工作。比如,电商会使用传统的关系型数据库MySQL和Oracle等来存储每一笔事务数据,除此之外,Redis和MongoDB这样的NoSQL数据库也常用于数据的采集。

在大数据的采集过程中,其主要特点和挑战是并发数高,因为同时有可能会有成千上万的用户来进行访问和操作,比如火车票售票网站和淘宝,它们并发的访问量在峰值时达到上百万,所以需要在采集端部署大量数据库才能支撑。并且如何在这些数据库之间进行负载均衡和分片的确是需要深入的思考和设计。

大数据处理之二:导入/预处理

虽然采集端本身会有很多数据库,但是如果要对这些海量数据进行有效的分析,还是应该将这些来自前端的数据导入到一个集中的大型分布式数据库,或者分布式存储集群,并且可以在导入基础上做一些简单的清洗和预处理工作。也有一些用户会在导入时使用来自Twitter的Storm来对数据进行流式计算,来满足部分业务的实时计算需求。

导入与预处理过程的特点和挑战主要是导入的数据量大,每秒钟的导入量经常会达到百兆,甚至千兆级别。

大数据处理之三:统计/分析

统计与分析主要利用分布式数据库,或者分布式计算集群来对存储于其内的海量数据进行普通的分析和分类汇总等,以满足大多数常见的分析需求,在这方面,一些实时性需求会用到EMC的GreenPlum、Oracle的Exadata,以及基于MySQL的列式存储Infobright等,而一些批处理,或者基于半结构化数据的需求可以使用Hadoop。

统计与分析这部分的主要特点和挑战是分析涉及的数据量大,其对系统资源,特别是I/O会有极大的占用。

大数据处理之四:挖掘

与前面统计和分析过程不同的是,数据挖掘一般没有什么预先设定好的主题,主要是在现有数据上面进行基于各种算法的计算,从而起到预测(Predict)的效果,从而实现一些高级别数据分析的需求。比较典型算法有用于聚类的Kmeans、用于统计学习的SVM和用于分类的NaiveBayes,主要使用的工具有Hadoop的Mahout等。该过程的特点和挑战主要是用于挖掘的算法很复杂,并且计算涉及的数据量和计算量都很大,常用数据挖掘算法都以单线程为主。

整个大数据处理的普遍流程至少应该满足这四个方面的步骤,才能算得上是一个比较完整的大数据处理。

大数据应用与案例分析

大数据应用的关键,也是其必要条件,就在于"IT"与"经营"的融合,当然,这里的经营的内涵可以非常广泛,小至一个零售门店的经营,大至一个城市的经营。以下是我整理的关于各行各业,不同的组织机构在大数据方面的应用的案例,在此申明,以下案例均来源于网络,本文仅作引用,并在此基础上作简单的梳理和分类。

大数据应用案例之:医疗行业

[1] Seton Healthcare是采用IBM最新沃森技术医疗保健内容分析预测的首个客户。该技术允许企业找到大量病人相关的临床医疗信息,通过大数据处理,更好地分析病人的信息。

[2] 在加拿大多伦多的一家医院,针对早产婴儿,每秒钟有超过3000次的数据读取。通过这些数据分析,医院能够提前知道哪些早产儿出现问题并且有针对性地采取措施,避免早产婴儿夭折。

[3] 它让更多的创业者更方便地开发产品,比如通过社交网络来收集数据的健康类App。也许未来数年后,它们搜集的数据能让医生给你的诊断变得更为精确,比方说不是通用的成人每日三次一次一片,而是检测到你的血液中药剂已经代谢完成会自动提醒你再次服药。

大数据应用案例之:能源行业

[1] 智能电网现在欧洲已经做到了终端,也就是所谓的智能电表。在德国,为了鼓励利用太阳能,会在家庭安装太阳能,除了卖电给你,当你的太阳能有多余电的时候还可以买回来。通过电网收集每隔五分钟或十分钟收集一次数据,收集来的这些数据可以用来预测客户的用电习惯等,从而推断出在未来2~3个月时间里,整个电网大概需要多少电。有了这个预测后,就可以向发电或者供电企业购买一定数量的电。因为电有点像期货一样,如果提前买就会比较便宜,买现货就比较贵。通过这个预测后,可以降低采购成本。

[2] 维斯塔斯风力系统,依靠的是BigInsights软件和IBM超级计算机,然后对气象数据进行分析,找出安装风力涡轮机和整个风电场最佳的地点。利用大数据,以往需要数周的分析工作,现在仅需要不足1小时便可完成。

大数据应用案例之:通信行业

[1] XO Communications通过使用IBM SPSS预测分析软件,减少了将近一半的客户流失率。XO现在可以预测客户的行为,发现行为趋势,并找出存在缺陷的环节,从而帮助公司及时采取措施,保留客户。此外,IBM新的Netezza网络分析加速器,将通过提供单个端到端网络、服务、客户分析视图的可扩展平台,帮助通信企业制定更科学、合理决策。

[2] 电信业者透过数以千万计的客户资料,能分析出多种使用者行为和趋势,卖给需要的企业,这是全新的资料经济。

[3] 中国移动通过大数据分析,对企业运营的全业务进行针对性的监控、预警、跟踪。系统在第一时间自动捕捉市场变化,再以最快捷的方式推送给指定负责人,使他在最短时间内获知市场行情。

[4] NTT docomo把手机位置信息和互联网上的信息结合起来,为顾客提供附近的餐饮店信息,接近末班车时间时,提供末班车信息服务。

大数据应用案例之:零售业

[1] "我们的某个客户,是一家领先的专业时装零售商,通过当地的百货商店、网络及其邮购目录业务为客户提供服务。公司希望向客户提供差异化服务,如何定位公司的差异化,他们通过从 Twitter 和 Facebook 上收集社交信息,更深入的理解化妆品的营销模式,随后他们认识到必须保留两类有价值的客户:高消费者和高影响者。希望通过接受免费化妆服务,让用户进行口碑宣传,这是交易数据与交互数据的完美结合,为业务挑战提供了解决方案。"Informatica的技术帮助这家零售商用社交平台上的数据充实了客户主数据,使他的业务服务更具有目标性。

[2] 零售企业也监控客户的店内走动情况以及与商品的互动。它们将这些数据与交易记录相结合来展开分析,从而在销售哪些商品、如何摆放货品以及何时调整售价上给出意见,此类方法已经帮助某领先零售企业减少了17%的存货,同时在保持市场份额的前提下,增加了高利润率自有品牌商品的比例

MySQL性能调优 – 你必须了解的15个重要变量

前言:

MYSQL 应该是最流行了 WEB 后端数据库。虽然 NOSQL 最近越来越多的被提到,但是相信大部分架构师还是会选择 MYSQL 来做数据存储。本文作者总结梳理MySQL性能调优的15个重要变量,又不足需要补充的还望大佬指出。

1.DEFAULT_STORAGE_ENGINE

如果你已经在用MySQL 5.6或者5.7,并且你的数据表都是InnoDB,那么表示你已经设置好了。如果没有,确保把你的表转换为InnoDB并且设置default_storage_engine为InnoDB。

为什么?简而言之,因为InnoDB是MySQL(包括Percona Server和MariaDB)最好的存储引擎 – 它支持事务,高并发,有着非常好的性能表现(当配置正确时)。这里有详细的版本介绍为什么

2.INNODB_BUFFER_POOL_SIZE

这个是InnoDB最重要变量。实际上,如果你的主要存储引擎是InnoDB,那么对于你,这个变量对于MySQL是最重要的。

基本上,innodb_buffer_pool_size指定了MySQL应该分配给InnoDB缓冲池多少内存,InnoDB缓冲池用来存储缓存的数据,二级索引,脏数据(已经被更改但没有刷新到硬盘的数据)以及各种内部结构如自适应哈希索引。

根据经验,在一个独立的MySQL服务器应该分配给MySQL整个机器总内存的80%。如果你的MySQL运行在一个共享服务器,或者你想知道InnoDB缓冲池大小是否正确设置,详细请看这里。

3.INNODB_LOG_FILE_SIZE

InnoDB重做日志文件的设置在MySQL社区也叫做事务日志。直到MySQL 5.6.8事务日志默认值innodb_log_file_size=5M是唯一最大的InnoDB性能杀手。从MySQL 5.6.8开始,默认值提升到48M,但对于许多稍繁忙的系统,还远远要低。

根据经验,你应该设置的日志大小能在你服务器繁忙时能存储1-2小时的写入量。如果不想这么麻烦,那么设置1-2G的大小会让你的性能有一个不错的表现。这个变量也相当重要,更详细的介绍请看这里。

当然,如果你有大量的大事务更改,那么,更改比默认innodb日志缓冲大小更大的值会对你的性能有一定的提高,但是你使用的是autocommit,或者你的事务更改小于几k,那还是保持默认的值吧。

4.INNODB_FLUSH_LOG_AT_TRX_COMMIT

默认下,innodb_flush_log_at_trx_commit设置为1表示InnoDB在每次事务提交后立即刷新同步数据到硬盘。如果你使用autocommit,那么你的每一个INSERT, UPDATE或DELETE语句都是一个事务提交。

同步是一个昂贵的操作(特别是当你没有写回缓存时),因为它涉及对硬盘的实际同步物理写入。所以如果可能,并不建议使用默认值。

两个可选的值是0和2:

* 0表示刷新到硬盘,但不同步(提交事务时没有实际的IO操作)

* 2表示不刷新和不同步(也没有实际的IO操作)

所以你如果设置它为0或2,则同步操作每秒执行一次。所以明显的缺点是你可能会丢失上一秒的提交数据。具体来说,你的事务已经提交了,但服务器马上断电了,那么你的提交相当于没有发生过。

显示的,对于金融机构,如银行,这是无法忍受的。不过对于大多数网站,可以设置为innodb_flush_log_at_trx_commit=0|2,即使服务器最终崩溃也没有什么大问题。毕竟,仅仅在几年前有许多网站还是用MyISAM,当崩溃时会丢失30s的数据(更不要提那令人抓狂的慢修复进程)。

那么,0和2之间的实际区别是什么?性能明显的差异是可以忽略不计,因为刷新到操作系统缓存的操作是非常快的。所以很明显应该设置为0,万一MySQL崩溃(不是整个机器),你不会丢失任何数据,因为数据已经在OS缓存,最终还是会同步到硬盘的。

5.SYNC_BINLOG

已经有大量的文档写到sync_binlog,以及它和innodb_flush_log_at_trx_commit的关系,下面我们来简单的介绍下:

a) 如果你的服务器没有设置从服务器,而且你不做备份,那么设置sync_binlog=0将对性能有好处。

b) 如果你有从服务器并且做备份,但你不介意当主服务器崩溃时在二进制日志丢失一些事件,那么为了更好的性能还是设置为sync_binlog=0.

c) 如果你有从服务器并且备份,你非常在意从服务器的一致性,以及能及时恢复到一个时间点(通过使用最新的一致性备份和二进制日志将数据库恢复到特定时间点的能力),那么你应该设置innodb_flush_log_at_trx_commit=1,并且需要认真考虑使用sync_binlog=1。

问题是sync_binlog=1代价比较高 – 现在每个事务也要同步一次到硬盘。你可能会想为什么不把两次同步合并成一次,想法正确 – 新版本的MySQL(5.6和5.7,MariaDB和Percona Server)已经能合并提交,那么在这种情况下sync_binlog=1的操作也不是这么昂贵了,但在旧的mysql版本中仍然会对性能有很大影响。

6.INNODB_FLUSH_METHOD

将innodb_flush_method设置为O_DIRECT以避免双重缓冲.唯一一种情况你不应该使用O_DIRECT是当你操作系统不支持时。但如果你运行的是Linux,使用O_DIRECT来激活直接IO。

不用直接IO,双重缓冲将会发生,因为所有的数据库更改首先会写入到OS缓存然后才同步到硬盘 – 所以InnoDB缓冲池和OS缓存会同时持有一份相同的数据。特别是如果你的缓冲池限制为总内存的50%,那意味着在写密集的环境中你可能会浪费高达50%的内存。如果没有限制为50%,服务器可能由于OS缓存的高压力会使用到swap。

简单地说,设置为innodb_flush_method=O_DIRECT。

7.INNODB_BUFFER_POOL_INSTANCES

MySQL 5.5引入了缓冲实例作为减小内部锁争用来提高MySQL吞吐量的手段。

在5.5版本这个对提升吞吐量帮助很小,然后在MySQL 5.6版本这个提升就非常大了,所以在MySQL5.5中你可能会保守地设置innodb_buffer_pool_instances=4,在MySQL 5.6和5.7中你可以设置为8-16个缓冲池实例。

你设置后观察会觉得性能提高不大,但在大多数高负载情况下,它应该会有不错的表现。

对了,不要指望这个设置能减少你单个查询的响应时间。这个是在高并发负载的服务器上才看得出区别。比如多个线程同时做许多事情。

8.INNODB_THREAD_CONCURRENCY

InnoDB有一种方法来控制并行执行的线程数 – 我们称为并发控制机制。大部分是由innodb_thread_concurrency值来控制的。如果设置为0,并发控制就关闭了,因此InnoDB会立即处理所有进来的请求(尽可能多的)。

在你有32CPU核心且只有4个请求时会没什么问题。不过想像下你只有4CPU核心和32个请求时 – 如果你让32个请求同时处理,你这个自找麻烦。因为这些32个请求只有4 CPU核心,显然地会比平常慢至少8倍(实际上是大于8倍),而然这些请求每个都有自己的外部和内部锁,这有很大可能堆积请求。

下面介绍如何更改这个变量,在mysql命令行提示符执行:

对于大多数工作负载和服务器,设置为8是一个好开端,然后你可以根据服务器达到了这个限制而资源使用率利用不足时逐渐增加。可以通过show engine innodb status\G来查看目前查询处理情况,查找类似如下行:

9.SKIP_NAME_RESOLVE

这一项不得不提及,因为仍然有很多人没有添加这一项。你应该添加skip_name_resolve来避免连接时DNS解析。

大多数情况下你更改这个会没有什么感觉,因为大多数情况下DNS服务器解析会非常快。不过当DNS服务器失败时,它会出现在你服务器上出现“unauthenticated connections” ,而就是为什么所有的请求都突然开始慢下来了。

所以不要等到这种事情发生才更改。现在添加这个变量并且避免基于主机名的授权。

10.INNODB_IO_CAPACITY, INNODB_IO_CAPACITY_MAX

* innodb_io_capacity:用来当刷新脏数据时,控制MySQL每秒执行的写IO量。

* innodb_io_capacity_max: 在压力下,控制当刷新脏数据时MySQL每秒执行的写IO量

首先,这与读取无关 – SELECT查询执行的操作。对于读操作,MySQL会尽最大可能处理并返回结果。至于写操作,MySQL在后台会循环刷新,在每一个循环会检查有多少数据需要刷新,并且不会用超过innodb_io_capacity指定的数来做刷新操作。这也包括更改缓冲区合并(在它们刷新到磁盘之前,更改缓冲区是辅助脏页存储的关键)。

第二,我需要解释一下什么叫“在压力下”,MySQL中称为”紧急情况”,是当MySQL在后台刷新时,它需要刷新一些数据为了让新的写操作进来。然后,MySQL会用到innodb_io_capacity_max。

那么,应该设置innodb_io_capacity和innodb_io_capacity_max为什么呢?

最好的方法是测量你的存储设置的随机写吞吐量,然后给innodb_io_capacity_max设置为你的设备能达到的最大IOPS。innodb_io_capacity就设置为它的50-75%,特别是你的系统主要是写操作时。

通常你可以预测你的系统的IOPS是多少。例如由8 15k硬盘组成的RAID10能做大约每秒1000随机写操作,所以你可以设置innodb_io_capacity=600和innodb_io_capacity_max=1000。许多廉价企业SSD可以做4,000-10,000 IOPS等。

这个值设置得不完美问题不大。但是,要注意默认的200和400会限制你的写吞吐量,因此你可能偶尔会捕捉到刷新进程。如果出现这种情况,可能是已经达到你硬盘的写IO吞吐量,或者这个值设置得太小限制了吞吐量。

11.INNODB_STATS_ON_METADATA

如果你跑的是MySQL 5.6或5.7,你不需要更改innodb_stats_on_metadata的默认值,因为它已经设置正确了。

不过在MySQL 5.5或5.1,强烈建议关闭这个变量 – 如果是开启,像命令show table status会立即查询INFORMATION_SCHEMA而不是等几秒再执行,这会使用到额外的IO操作。

从5.1.32版本开始,这个是动态变量,意味着你不需要重启MySQL服务器来关闭它。

12.INNODB_BUFFER_POOL_DUMP_AT_SHUTDOWN INNODB_BUFFER_POOL_LOAD_AT_STARTUP

innodb_buffer_pool_dump_at_shutdown和innodb_buffer_pool_load_at_startup这两个变量与性能无关,不过如果你偶尔重启mysql服务器(如生效配置),那么就有关。当两个都激活时,MySQL缓冲池的内容(更具体地说,是缓存页)在停止MySQL时存储到一个文件。当你下次启动MySQL时,它会在后台启动一个线程来加载缓冲池的内容以提高预热速度到3-5倍。

两件事:

第一,它实际上没有在关闭时复制缓冲池内容到文件,仅仅是复制表空间ID和页面ID – 足够的信息来定位硬盘上的页面了。然后它就能以大量的顺序读非常快速的加载那些页面,而不是需要成千上万的小随机读。

第二,启动时是在后台加载内容,因为MySQL不需要等到缓冲池内容加载完成再开始接受请求(所以看起来不会有什么影响)。

从MySQL 5.7.7开始,默认只有25%的缓冲池页面在mysql关闭时存储到文件,但是你可以控制这个值 – 使用innodb_buffer_pool_dump_pct,建议75-100。

这个特性从MySQL 5.6才开始支持。

13.INNODB_ADAPTIVE_HASH_INDEX_PARTS

如果你运行着一个大量SELECT查询的MySQL服务器(并且已经尽可能优化),那么自适应哈希索引将下你的下一个瓶颈。自适应哈希索引是InnoDB内部维护的动态索引,可以提高最常用的查询模式的性能。这个特性可以重启服务器关闭,不过默认下在mysql的所有版本开启。

这个技术非常复杂,在大多数情况下它会对大多数类型的查询直到加速的作用。不过,当你有太多的查询往数据库,在某一个点上它会花过多的时间等待AHI锁和闩锁。

如果你的是MySQL 5.7,没有这个问题 – innodb_adaptive_hash_index_parts默认设置为8,所以自适应哈希索引被切割为8个分区,因为不存在全局互斥。

不过在mysql 5.7前的版本,没有AHI分区数量的控制。换句话说,有一个全局互斥锁来保护AHI,可能导致你的select查询经常撞墙。

所以如果你运行的是5.1或5.6,并且有大量的select查询,最简单的方案就是切换成同一版本的Percona Server来激活AHI分区。

14.QUERY_CACHE_TYPE

如果人认为查询缓存效果很好,肯定应该使用它。好吧,有时候是有用的。不过这个只在你在低负载时有用,特别是在低负载下大多数是读取,小量写或者没有。

如果是那样的情况,设置query_cache_type=ON和query_cache_size=256M就好了。不过记住不能把256M设置更高的值了,否则会由于查询缓存失效时,导致引起严重的服务器停顿。

如果你的MySQL服务器高负载动作,建议设置query_cache_size=0和query_cache_type=OFF,并重启服务器生效。那样Mysql就会停止在所有的查询使用查询缓存互斥锁。

15.TABLE_OPEN_CACHE_INSTANCES

从MySQL 5.6.6开始,表缓存能分割到多个分区。

表缓存用来存放目前已打开表的列表,当每一个表打开或关闭互斥体就被锁定 – 即使这是一个隐式临时表。使用多个分区绝对减少了潜在的争用。

从MySQL 5.7.8开始,table_open_cache_instances=16是默认的配置。

欢迎做Java的工程师朋友们私信我资料免费获取免费的Java架构学习资料(里面有高可用、高并发、高性能及分布式、Jvm性能调优、Spring源码,MyBatis,Netty,Redis,Kafka,Mysql,Zookeeper,Tomcat,Docker,Dubbo,Nginx等多个知识点的架构资料)

其中覆盖了互联网的方方面面,期间碰到各种产品各种场景下的各种问题,很值得大家借鉴和学习,扩展自己的技术广度和知识面。

如何写数据分析报告

相信很多数据分析师在写数据分析报告的时候也会遇到一些困惑,因为我最近也在写一个报告,在这里就梳理一下如何写数据分析报告

数据分析报告是数据分析师常见的工具,写好一份数据分析报告,不但能够清楚描述问题,洞察数据并且提出一些有思考的举措,也很能反映出一个数据分析师的思维和用数据讲故事的能力,网上虽然也有很多关于写好数据分析报告的文章,但是大部分都是偏重于理论,具体实践的很少,我就在这里做一个汇总,希望能帮助一些朋友,以期抛砖引玉

--------分割线--------正式开始--------

一份好的数据分析报告离不开两部分:数据部分和分析部分。巧妇难为无米之炊,数据之于数据分析师就好像食材之于巧妇,数据的重要性可见一斑,分析部分是数据分析师将数据做成报告的最重要一步,是最体现一个数据分析师功底的部分,也是拉开差距的部分,下面就针对两部分分别进行阐述

一. 数据部分

数据部分最重要的就是数据质量,数据质量的好坏直接决定一份数据分析报告的好坏,如果报告中某一个数据被质疑,会直接影响这份数据分析报告的可信度,本章说一说跟数据有关的一些内容

1.数据的质量

1.1数据类型

数据类型比较好理解,就是数据以什么样的类型存储的,不同的数据类型有不同的使用方法,因此在处理数据之前,必须要先了解数据类型,常见的数据类型有(这里只说一些常见的数据类型):

整数型

int :用于存储整数,存储从-2的31次方到2的31次方之间的所有正负整数,每个INT类型的数据按4 个字节存储

bigint :用于存储大整数,存储从-2的63次方到2的63次方之间的所有正负整数,每个BIGINT 类型的数据占用8个字节的存储空间

smallint :用于存储小整数,存储从-2的15次方到2的15次方之间的所有正负整数。每个SMALLINT 类型的数据占用2 个字节的存储空间

浮点型

real :存储的数据可精确到第7 位小数,其范围为从-3.40E -38 到3.40E +38。 每个REAL类型的数据占用4 个字节的存储空间

float :存储的数据可精确到第15  位小数,其范围为从-1.79E -308 到1.79E +308。 每个FLOAT 类型的数据占用8 个字节的存储空间。  FLOAT数据类型可写为FLOAT[ n ]的形式。n 指定FLOAT 数据的精度。n 为1到15 之间的整数值。当n 取1 到7  时,实际上是定义了一个REAL 类型的数据,系统用4 个字节存储它;当n 取8 到15 时,系统认为其是FLOAT 类型,用8 个字节存储它

字符型

char : 数据类型的定义形式为CHAR[ (n) ],n 表示所有字符所占的存储空间,n  的取值为1 到8000, 即可容纳8000 个ANSI 字符。若不指定n 值,则系统默认值为1。  若输入数据的字符数小于n,则系统自动在其后添加空格来填满设定好的空间。若输入的数据过长,将会截掉其超出部分

nchar : 它与CHAR 类型相似。不同的是NCHAR数据类型n 的取值为1 到4000。 因为NCHAR 类型采用UNICODE  标准字符集(CharacterSet)。 UNICODE 标准规定每个字符占用两个字节的存储空间,所以它比非UNICODE  标准的数据类型多占用一倍的存储空间。使用UNICODE  标准的好处是因其使用两个字节做存储单位,其一个存储单位的容纳量就大大增加了,可以将全世界的语言文字都囊括在内,在一个数据列中就可以同时出现中文、英文、法文、德文等,而不会出现编码冲突

varchar :VARCHAR数据类型的定义形式为VARCHAR  [ (n) ]。 它与CHAR 类型相似,n 的取值也为1 到8000,  若输入的数据过长,将会截掉其超出部分。不同的是,VARCHAR数据类型具有变动长度的特性,因为VARCHAR数据类型的存储长度为实际数值长度,若输入数据的字符数小于n  ,则系统不会在其后添加空格来填满设定好的空间。一般情况下,由于CHAR 数据类型长度固定,因此它比VARCHAR 类型的处理速度快

时间和日期型

date :‘2018-01-17’

time :‘10:14:00’

timestamp :‘2018-01-17 10:14:00.45’

以上就是常用的数据类型,如果有其他的数据类型没有说到,可以去网上搜一下,都比较好理解

1.2噪音数据

因为网上有非常多的关于噪音数据的解释,都非常专业,我就不在这里做过多的详细解释了,我们只探讨从sql取出数据的时候有一些异常值的处理办法:

null

一般跑过sql的朋友肯定会发现,在跑出来的数据中会有null的情况,这个时候需要对null进行替换,如果是计算用,就把null替换成0,这个步骤可以在sql里面完成,也可以在excel里面完成

极大值

极大值会影响数据的计算结果,一般会进行处理,要么替换成除极大值以外的最大值,要么直接弃用

作为分母的0

如果0作为分母,在excel里会出现#DIV/0,这个时候可以直接把结果替换,或者在sql里面直接进行替换,用case……when……就可以替换

1.3数据的口径

数据的口径很重要,根据经验看,大部分的数据出现问题是口径造成的,数据的口径一定要跟业务的口径一致,拿留存率举例:

留存率是周期比率型指标,一般在计算留存率的时候需要确定 留存周期 和 活跃判定的口径

留存周期:留存周期通俗来讲就是指用户在多长时间范围内活跃,并在下一个周期内仍然活跃,这里的多长时间就是指留存周期

活跃判定:指怎么判定一个用户活跃,可以是启动App,可以是登陆,也可以是完成了一次其他特定行为,这个主要依照业务需求而定

实际计算:

周留存率的计算

分子:本周活跃 且 上周也活跃的用户数

分母:上周活跃的用户数

2.可能会用到的工具

在处理数据的过程中可以用很多工具,在这里就介绍一些比较常见的工具,大家耳熟能详,学起来也不是特变难

2.1提取数据

mysql

hivesql

两者的查询语句有相似的地方也有不同的地方,主要看自己所在公司的数据存储情况

2.2数据处理

python:一般写个脚本做一些机械的操作(我目前是这么用),也可以用来做计算

mysql:在查询的时候可以进行处理

excel:数据量比较小的时候,可以在excel上简单处理

2.3数据可视化

python:可以用来做一些词云图

Tableau:可视化一些图表,可以和sql结合着用

excel:做一些简单的图表,实际上数据处理的好的话,一般用excel就足够了

二. 分析部分

在处理了数据以后就要开始进行报告的撰写,写报告会涉及到几个部分的工作,这里分别进行介绍一下:

1.报告结构

一篇数据分析报告的结构是十分重要的,一个好的结构能够将他人带入到你的报告中,让他人更好的明白你的意图,减少信息传递之间的丢失,同时你的思维也主要展现在结构上,这就意味着在写数据分析报告前,一定好想清楚数据分析报告的结构,当然这里说的报告结构即包括整个报告的结构,也包括每一个章节的结构,这里就放到一起说了

1.1 总 - 分 - 总(多用在整体结构)

我们在读一本书的时候,打开目录,会发现整部书的结构一般包括:

前言

第一篇

第二篇

……

第n篇

结尾

这就是典型的总 - 分 - 总结构,是最常见的结构,如果是对一个专题进行分析,用这种形式是非常好的,举个例子:

某电商App近一个月内的销售额出现下滑,让你针对这个问题进行一次专题分析

分析思路:拿到这个问题,我们很容易想到的是,销售额出现下滑出现的原因有两个,一个是付费用户数减少了,另一个是付费用户的人均付费金额减少了,这两个原因属于并列的原因,不存在递进关系,也就是说付费用户数减少了与人均付费金额减少并不存在因果关系,没有什么相关性,因此需要对两个原因共同分析,最后输出结论和提升建议,分析完以后,会发现总

- 分 - 总结构很适合这样的分析,所以列出以下提纲

问题描述

销售额近一个月下降多少?绝对值,环比,同比数据

原因假设:付费用户数下降/人均付费金额下降

付费用户数下降分析

付费用户数降幅是多少?绝对值,环比,同比数据

定位下降人群:是整体下降还是某一群体用户数下降

这里就涉及到用户分群,用户分群的方法有很多,涉及到用户价值的分群常见的就是RFM模型,将分完群的用户进行数据对比,看看上个月付费用户的结构占比跟本月有什么不同,当然用户分群的方法也不止这一个,还有按照会员等级分群(主要用会员等级进行用户分群),按照活跃程度(新用户/留存用户/回流用户),按照消费习惯(一般用户表里面都会有用户的标签,标识这个用户的消费习惯,表示这个用户更喜欢购买哪一类的商品),不管用什么分群方法,都需要纵向对比,也就是这个月和上个月付费人群的对比

原因分析:

如果是付费用户整体下降(这种是大家都不想看到的现象,欣慰大盘数据的驱动需要投入大量的资源,也有可能是自然波动),考虑可能的原因主要有:用户整体流失,比如用户流失到竟对;或者本月有什么特殊情况,影响到了整体的用户活跃;或者是从活动维度去观察,是不是活动的力度减小,影响了用户付费的欲望

如果是某一个用户群体下降:考虑的原因可能有商品品类的影响,是不是某一类商品在平台没有上架,或者某一类商品涨价;或者这一类用户受到了哪些影响,一般可以从属性和行为角度去分析

提出策略:

针对分析出的原因提出可落地的策略(策略一定要落地,要具体,比如如果你提出一条策略是:提升新注册用户数,那么等于没说,老板多数会diss你,但是你如果说,通过减少注册时填写的非必要字段,如年龄/职业,来简化注册流程,挺升注册转化率,进而提升新注册用户数,那感觉是不一样的)

人均付费金额下降分析

人均付费金额的降幅是多少?绝对值,环比,同比数据

定位原因

人均付费金额下降可能的原因主要有:订单数量下降;每个订单包含的商品数的下降/某一个品类购买数下降

提出策略:针对分析出的原因提出可落地的策略

总结问题

明确造成销售额下降的原因到底是什么(定性以后,记得一定要量化,不量化会被diss)

提出有针对性的建议

如何预防再次发生

1.2 递进(可用于整体结构和章节内部结构)

这种结构适合对一个问题进行探索,就像上一个例子中,我们针对每一个可能原因进行分析的时候,就是采用的这种分析方法,这种分析结构特别适合对一个小问题进行深入的探索分析,层层递进,深挖原因,这里在举一个例子:

某一个App的新注册用户数环比上个月减少,需要你做一个深入的分析,找到原因,提供改进策略

分析思路:新注册用户数的的影响因素是一个典型的漏斗结构,也是一个典型的单向性用户旅程,画一张图就能说明白:

如图所示,影响注册用户数的原因全部标注在漏斗里面,但是注册全流程这个漏斗只能看个大概流失,所以我们会对某一步进行细化,这张图上,我们对用户从启动到注册成功进行细化,细化到用户行为,这样能够提出一些产品上的改进意见,这个时候,如果想要提升新注册用户数,只需要针对每一步流失原因进行分析,找到提升策略就可以了,基本上是所见即所得的分析

比如:我们想对提交注册信息到注册成功这一步进行优化,那么首先我们要找到用户注册失败的原因有什么,一般有:

用户已注册

密码格式不合规

系统错误

未勾选《隐私协议》

在提出建议的时候,只要针对以上原因提出具体改进意见就可以了

1.3并列结构(多用于整体结构)

这种结构一般遇到的情况不多,常见的有对不同的校区进行经营分析/对不同品类的商品进行售卖分析,基本都是以描述型分析为主,因为分析的主体是并列关系,所以只需要每个主体就行单独分析就好,基本采用的分析思路是一样的

1.4因果结构(多用于章节内部结构)

这种结构一般用在复盘分析报告中,复盘是常见的数据分析报告类型之一,也是很多公司比较重视的一个报告,比如双十一复盘/新手活动复盘等等, 以电商某一次大促复盘为例 ,这里直接写结构:

总体描述:

本次大促整体数据表现,整体活动节奏的介绍;销售额是多少,同比提升多少;利润情况;参与用户有多少,同比提升多少;卖出商品有多少,同比提升多少;各个子活动的贡献是多少

子活动1的效果分析

子活动1的简介,作用,发力点

子活动1的贡献是什么,对于直接提升结果指标或者间接提升指标有哪些贡献

子活动1的成本是什么?投入产出比是多少?

子活动2的效果分析

子活动x的效果分析

最后汇总,提出优化建议

2.分析方法

讲完了整体结构,我们就该进入到具体分析的过程里面,这里的分析方法,主要想说说怎么去针对不同的数据进行分析,也就是说怎么通过数据看出问题,这里介绍常用的5种分析方法,但是有一句话非常重要,想写这节的最前面: 数据分析师一定要懂业务,在分析之前最好能把问题定位个大概,再去捞数,再去分析,否则每天会沉浸在漫无目的取数中,我认为一个数据分析师最重要的能力是要懂业务,从数据的角度看业务,才能驱动业务

2.1 对比分析

横向对比

横向对比就是把一个指标按照不同维度拆分,去对比不同维度的变化,举个简单的例子来说就是:

昨天的DAU增长了30%,那么把DAU进行拆分,可以拆分成以下三种方式:

DAU=新注册用户数+留存用户数+回流用户数

DAU=北京活跃用户数+河北活跃用户数+山东活跃用户数+……

DAU=北京活跃用户数+河北的活跃用户数+……

            =北京的新增用户数+北京的留存用户数+北京的回流用户数+河北的新增用户数+河北的留存用户数+河北的回流用户数+……

这里留一个疑问,怎么去选择优先下钻的维度?想明白以后分析的效率就会有很大提升

纵向对比

在进行完横向对比以后,就要开始进行纵向对比,纵向对比主要是在时间维度上,还拿上一个例子来说,我们按照第一种方式进行横向对比以后,就要纵向对比,见下表:

2.2分布分析

分布分析一般是应用的场景比如用累计消费金额去分组/按照用户一个月活跃天数去分组,这些场景都有两个共性的特征:

属性值都是数值类型,或者日期类型

属性值非常多,比如累计消费金额可能从1-90000中间任意一个数字,也就是属性值非常多,没办法用每一个属性值去单独分析,因此需要分组

还是上图说明:

2.3交叉分析

交叉分析一般指多维度交叉,或者不同指标之间的交叉

多维度交叉其实有点类似对比分析的第三类分类方法,这里不在赘述了,还是那个图,但是在实际分析中的作用其实很是强大,具体如何应用就需要大家举一反三啦,仔细看看这张图,可以换成哪些分析场景下的哪些场景的交叉分析:

不同指标交叉一般用在分析变化趋势中,或者寻找相关因素的时候,上图:

这样既能看绝对值的变化,又能一目了然的看出变化趋势,如果不同指标之间呈现一定的相关性,那就是相当完美了

2.4漏斗分析

漏斗分析模型比较好理解了,一般在行为分析中常用到,直接上图吧:

是不是有点眼熟?漏斗分析一般分析应用在分析用户使用某项业务时,经过一系列步骤转化的效果,因为用户会沿着产品设计的路径到达最终目标事件,在分析每一步转化的时候会用到这个模型

2.5矩阵分析

矩阵分析是一个不错的分析模型,主要用在分类上面,常见的有用户分类、产品分类等,比如像常见的RFM模型是一个三维矩阵,有八个象限,上两个图看看:

矩阵分析其实不难理解,但是涉及到一个比较关键的问题,就是临界点怎么选择,通俗来说就是第一象限和第二象限的临界值是多少,有的是0,有的不是0,举个例子:

我想用活跃度和累计消费金额对1万个用户进行分群,使用矩阵分析

我建好了这个二维矩阵,我第一件事就是先要确定原点的坐标值,也就是说用户的累计消费金额大于x,就会出现在第一/四象限,如果小于x,就会出现在第二/三象限,想确定这个值需要一定的方法,会用到一些分类算法,这个可以去网上查一些关于分类的教程,有很多,后续我会写一盘文章来介绍分类,这里就不细讲了

以上就是数据分析最重要的两个模块,当然在实际操作中还有很多需要思考的地方,太细节的东西不太能够面面俱到,这里留给大家去思考的空间,比如:

数据分析报告怎么讲成一个故事,比如背景-现状-原因-策略-预期结果-复盘结果?

每一页PPT怎么排版会让你的数据分析报告可读性更高?

如果你的数据分析报告不采用上述的结构,还能用哪些结构?

怎么让你的数据分析报告显得更高大上?

可以留言交流哦


网站标题:mysql流失率怎么写,流失率表格
分享路径:http://dzwzjz.com/article/pheeep.html
在线咨询
服务热线
服务热线:028-86922220
TOP