大橙子网站建设,新征程启航

为企业提供网站建设、域名注册、服务器等服务

C++中算法与泛型算法的示例分析

这篇文章将为大家详细讲解有关C++中算法与泛型算法的示例分析,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。

站在用户的角度思考问题,与客户深入沟通,找到通辽网站设计与通辽网站推广的解决方案,凭借多年的经验,让设计与互联网技术结合,创造个性化、用户体验好的作品,建站类型包括:网站制作、网站建设、企业官网、英文网站、手机端网站、网站推广、域名申请、网页空间、企业邮箱。业务覆盖通辽地区。

本文包括的算法有:

  • 只读算法:find()、count()、accumulate()、equal()

  • 写算法:fill()、fill_n()、back_inserter()、copy()、copy_backward()、replace()、replace_copy()、next_permutation()、prev_permutation()

  • 重排元素算法:sort()、stable_sort()、unique()

一、算法简介

大多数算法在头文件algorithm中。标准库还在头文件numeric中定义了一组数值泛型算法
算法是如何工作的:

  • 迭代器令算法不依赖于容器类型:算法不依赖于容器所保存的元素类型。只要有一个迭代器可以来访问元素,就可以进行运算

  • 但算法依赖于元素类型的操作:虽然迭代器令算法不依赖于容器类型,但大多数算法都是用了一个(多个)元素类型上的操作。例如find用元素类型的==运算符完成每个元素与给定值的比较。其他算法可能要求元素类型支持“<”运算符。不过,我们将看到,大多数算法提供了一种方法,允许我们使用自定义的操作来替代默认的运算符

二、泛型算法

  • 标准库提供了超过100个算法,这些算法都对一个范围内的元素来进行操作

  • 算法基本上分为3类:是否读取元素、改变元素、重排元素顺序

三、只读算法

  • 只可以操作容器元素,不可以改变容器内的值

  • 因为是只读,所以建议使用只读迭代器(cbegin()、cend())

find()

  • 功能:遍历一个范围中是否包含某元素

  • 参数:前2个参数是一个迭代器范围或者指针范围。第3个参数是要查找的元素

  • 返回值:成功返回要查找的元素所在的迭代器。失败返回参数2

//判断value在vec中是否存在,因为find如果失败返回的是参数2.所以可以用来判断是否查找成功
 
vector vec{ 1,2,3};
int value = 2;
auto result=find(vec.cbegin(),vec.cend(), value);
cout << "The value " << value << (result == vec.cend()
 ? "is not present" : "is present") << endl;
vector vec{ "A","B","C" };
auto result=find(vec.cbegin(),vec.cend(), "B");
cout << "The B "<< (result == vec.cend()
 ? "is not present" : "is present") << endl;

对数组的操作:可以用内置函数begin()、end()作为数组的迭代器,也可以用指针作为迭代器

int arr[] = { 1,2,3,4,5 };
int val = 4;
int* result = find(begin(arr), end(arr), val);
if (result != end(arr)) {
 cout << "find succcess,value is:"<< *result<< endl;
}
int arr[] = { 1,2,3,4,5 };
int value = 3;
auto result = find(arr + 1, arr + 3, value);
cout << "The value "<

count()

  • 功能:返回元素在指定迭代器范围内出现的次数

  • 返回值:成功返回出现的次数,没有返回0

list li{ 1,2,3,66,66,66,100 };
cout <<"The 66 count is:" 
	<

accumulate()

  • 头文件:numeric

  • 功能:将指定范围内的元素进行和运算,参数3为和运算的初始值

  • 返回值:返回和运算的结果

  • 注意:此函数操作的元素必须能够与+运算符进行操作

//计算li元素的和,和的初始值为0
list li{ 1,2,3 };
cout <<"The sum is:" <

使用string时,必须显示地调用,不能够直接使用字符串,因为这样会被accumulate函数认为是一个const char*对象而出错

//正确
ist li{"A","B","C"};
cout <
//错误
list li{"A","B","C"};
cout <
//正确
list li{"A","B","C"};
string s = "String:";
cout <

附加:如果想要进行别的运行,例如乘、除等,可以使用参数4.例如下面是对一个数组内的元素进行乘操作(备注:初始化不要填0,否则结果就为0)

int *p = new int[4] {1, 2, 3, 4};
cout << accumulate(p, p + 4, 1,multiplies()) << endl; //24

equal()

  • 功能:用来比较两个指定范围内的元素是否都是相同的值(常来比较两个元素是否相同)

  • 参数:参数1和参数2指定一个容器的范围。参数3指定另一个容器的开始范围

  • 比较规则:将参数1和2指定的范围内的所有元素,查看这些元素是否与参数3所指定的另一个容器的开始处是否都存在(不一定要个数都相同,只要容器1的元素在容器2中都要一一对应)

  • 返回值:都相同返回1。不相同返回0

  • 因为equal调用迭代器完成操作,所以equal可以用来比较两个不同类型的容器。例如vector和list可以进行比较

vector vec1{ 1,2};
vector vec2{ 1,2,3};
vector vec3{ 1,2,3,4};
vector vec4{ 1,2,3,4 };
 
cout << equal(vec1.cbegin(),vec1.cend(), vec4.cbegin())<< endl; //1
cout << equal(vec2.cbegin(), vec2.cend(), vec4.cbegin()) << endl; //1
cout << equal(vec3.cbegin(), vec3.cend(), vec4.cbegin()) << endl; //1
vector vec1{ 2,3};
vector vec2{ 1,2,3,4 };
 
cout << equal(vec1.cbegin(),vec1.cend(), vec2.cbegin())<< endl; //0
vector vec1{ "A","B"};
vector vec2{ "B" };
vector vec3{ "A","B","C" };
 
cout << equal(vec1.cbegin(), vec1.cend(), vec3.cbegin()) << endl; //1
cout << equal(vec2.cbegin(), vec2.cend(), vec3.cbegin())<< endl; //0

四、写算法

可以读写容器内的元素,但不可以改变容器的大小。因此操作时要注意容器的大小(例如不能对空容器操作)

因为会改变值,所以不能使用只读迭代器(cbegin()、cend())

fill()

  • 用来改变指定位置处的元素

  • 参数:参数1、2指定容器的范围,参数3位要设置的值

vector vec{ 1,2,3,4,5 };
fill(vec.begin(), vec.end(), 0);//将vec全部置为0
for (auto v = vec.cbegin(); v != vec.cend(); v++)
	cout << *v << endl;
vector vec{ 1,2,3,4,5,6 };
fill(vec.begin(), vec.begin()+vec.size()/2, 66); //将vec的前半部分元素变为66
 
for (auto v = vec.cbegin(); v != vec.cend(); v++)
	cout << *v << endl;

fill_n()

  • 用来将指定数量的元素变为某个值

  • 参数:参数1为迭代器起始位置。参数2为要改变的元素个数。参数3为要设定的值

  • 注意:要注意参数2的设定,不能超出容器的大小,也不能对空容器操作

vector vec{ 1,2,3,4,5,6 };
 
fill_n(vec.begin(), 3, 66); //将vec的前3个元素变为66
for (auto v = vec.cbegin(); v != vec.cend(); v++)
	cout << *v << endl;
 
fill_n(vec.begin(), vec.size(), 66); //将vec全部变为66
for (auto v = vec.cbegin(); v != vec.cend(); v++)
	cout << *v << endl;
//下面代码不会出错,但是也不会有效果,因为vec是空向量
 
vector vec;
fill_n(vec.begin(), vec.size(), 66);
for (auto v = vec.cbegin(); v != vec.cend(); v++) //不打印任何信息
	cout << *v << endl;

back_inserter()

  • 又名插入迭代器

  • 参数:为一个容器的引用

  • 返回值:返回与该容器绑定的插入迭代器

  • 功能:常用来返回一个容器的迭代器,然后对此迭代器进行操作

  • 当我们通过返回的插入迭代器赋值时,会自动调用push_back将一个具有给定值的元素添加到容器中

  • 头文件iterator

vector vec; //空容器
 
auto it = back_inserter(vec); //返回vec的第一个迭代器
*it = 42; //此时vec有了一个元素,值为42

现在我们可以使用fill_n来给一个空容器赋值:在每次迭代中,back_inserter返回迭代器,因此每次赋值都会在vec上调用push_back,因此fill_n就能够操作了。下面是在vec的末尾添加10个新的元素

vector vec;
fill_n(back_inserter(vec), 10, 0);//通过back_inserter创建一个插入迭代器,然后可以向vec添加元素了
for (auto v = vec.cbegin(); v != vec.cend(); v++) //打印10个0
	cout << *v << endl;

copy()

  • 将参数1、2指定范围的元素拷贝给参数3指定的容器

  • 参数:参数1、2为一个容器的范围。参数3要接受拷贝的容器起始位置

  • 注意:参数3要有足够的空间保存拷贝的数据

  • 返回值:返回拷贝目的位置的迭代器值

int arr1[] = { 1,2,3 };
int arr2[sizeof(arr1)/sizeof(*arr1)];
 
auto ret = copy(begin(arr1), end(arr1), arr2); //将数组1拷贝给数组2。ret为arr2数组最后元素的下一个位置
 
for (auto i = 0; i < sizeof(arr2) / sizeof(*arr2); i++) {
 cout << arr2[i]<< endl;
}

copy_backward

  • 该函数与copy的不同之处在于:

    • copy是从第一个元素开始拷贝,而copy_backward是从最后一个元素开始拷贝

    • copy的第3个参数是接受拷贝的容器起始位置,而copy_backward是目的序列的结束迭代器

  • 会复制前两个迭代器参数指定的序列。第三个参数是目的序列的结束迭代器

C++中算法与泛型算法的示例分析

replace()

  • 将指定范围内指定的元素替换为另一个值

  • 参数:1、2指定替换的范围。3:目标值,4:替换后的值

vector vec{ 1,0,0,0,5 };
replace(vec.begin(), vec.end(), 0,66); //将vec中为0的全部替换为66
 
for (auto v = vec.cbegin(); v != vec.cend(); v++) {
	cout << *v << endl;
}

replace_copy()

  • 此函数会保留原容器不变,然后将替换后的结果保存在另一个容器中

  • 参数:参数12位要替换的范围。参数3位另一个容器的起始位置。参数4目标值。参数5替换后的值

vector vec{ 1,0,0,0,5 };
vector vec2;
 
replace_copy(vec.begin(), vec.end(),back_inserter(vec2), 0,66); //vec的元素保持不变,vec2为替换后的值
	
for (auto v = vec2.cbegin(); v != vec2.cend(); v++) {
 cout << *v << endl;
}

next_permutation()

  • 功能:对一个迭代区间的数值进行全排列

  • 返回值:会根据前面next_permutation函数的调用,当操作的区间不存在下一个排列时,函数返回false;否则如果可以继续进行全排列,那么就返回true

//函数原型
#include 
bool next_permutation(iterator start,iterator end)

演示案例:下面的程序每调用一次next_permutation就会对我们制定的迭代区间进行一次排列,直到得出全部排列之后,返回false

int *p = new int[3] {1, 2, 3};
do {
 for (int i = 0; i < 3; ++i){
  cout << p[i];
 }
 cout << endl;
} while (next_permutation(p, p + 3));

C++中算法与泛型算法的示例分析

prev_permutation()

  • 与next_permutation的功能显示,区别就是prev_permutation是求当前排列的前一个排列,而next_permutation是求当前排列的下一个排列

五、重排元素算法

sort()、unqie()、stable_sort()

因为会改变值,所以不能使用只读迭代器(cbegin()、cend())

sort()

  • 将容器内的元素按照运算符“<”的规则排序,从小到大

  • 参数:一个容器的迭代器范围

vector vec{ 1,4,2,8,4,1 };
sort(vec.begin(), vec.end()); //将vec的值从小到大排序
 
for (auto v = vec.cbegin(); v != vec.cend(); v++) {
 cout << *v << endl;
}

unique()

  • 相邻之间如果有重复相同的元素,则删除重复的元素只保留一个

  • 参数:一个容器的迭代器范围

  • 返回值:返回删除重复元素之后的最后一个元素的后一个位置

  • 注意(重点):虽然删除了元素,但是容器的大小依然没有变,迭代器也没有变。所有变为迭代器时一定要注意

C++中算法与泛型算法的示例分析

vector vec{ 1,1,2,3,4,4,4,5,1 };
auto end_unique=unique(vec.begin(), vec.end());
 
//for循环时使用unique的返回值,如果使用vec.cend(),那么会打印后面没有元素位置的乱值
for (auto v = vec.cbegin(); v != end_unique; v++) { 
	cout << *v << endl;
}

stable_sort()

  • 也是排序

  • 如果非字符串,就先按照数值的个数排序,个数相同时再按照大小排序

  • 如果是字符串:按照长度排序,长度相同的按照字典排序

vector vec{ 1,10,2,100,4,1 };
stable_sort(vec.begin(), vec.end());
 
//1,1,2,4,10,100
for (auto v = vec.cbegin(); v != vec.cend(); v++) {
 cout << *v << endl;
}

六、向算法传递函数和lambda表达式

注意事项:

向算法传递函数或者lambda表达式时要注意。该算法支持调用一元谓词(参数)还是多元谓词(参数)

例如:find_if的第3个参数传递的函数/lambda只接受一个参数,如果是两个参数的函数或lambda,那么就不能调用(后面会介绍bind函数解决这个问题)

sort()

bool isMin(const int &s1, const int & s2) {
 return s1 < s2;
}
 
bool isMax(const int &s1, const int & s2) {
 return s1 > s2;
}
 
vector vec{1,2,3,4,5};
sort(vec.begin(), vec.end(), isMin); //从小到大排序
sort(vec.begin(), vec.end(), isMax); //从大到小排序
 
//使用lambda表达式
sort(vec.begin(), vec.end(),
 [](const int &a, const int &b) {return a < b; });//从小到大排序
sort(vec.begin(), vec.end(), 
 [](const int &a, const int &b) {return a > b; });//从大到小排序

stable_sort()

C++中算法与泛型算法的示例分析

//按照长度排序,长度相同的按照字典排序
bool isShorter(const string &s1, const string & s2) {
	return s1.size() < s2.size();
}
 
vector vec{"fox","jumps","over","quick","res","slow","the","turtle"};
stable_sort(vec.begin(), vec.end(), isShorter);
 
for (auto v = vec.cbegin(); v != vec.cend(); v++) {
	cout << *v << endl;
}

find_if()

  • 用来在指定范围内查找比指定值大/下的元素

  • 如果是大于(那么就是最大的那个)。如果是小于(那么就是比他小一个的那个)

  • 参数3:为一个函数指针或者lambda表达式

  • 返回值:存在就返回这个值,不存在返回尾迭代器

vector vec{ 1,2,3,4,5 };
int sz = 4;
 
//在vec中寻找比sz大的数
auto wc=find_if(vec.begin(), vec.end(), 
 [sz](const int &a) {return a > sz; }); //查找比sz大的
auto wc2=find_if(vec.begin(), vec.end(), 
		[sz](const int &a) {return a < sz; }); //查找比sz小的
 
cout << *wc << endl; //5
cout << *wc2 << endl; //3

for_each()

  • 用来遍历一个集合

  • 参数:参数12是一个容器的迭代器范围。参数3lambda表达式

vector vec{ 1,2,3,4,5 };
 
for_each(vec.begin(), vec.end(), 
 [](const int&s) {cout << s << " "; });
cout << endl;
vector vec{ "ABC","AB","A","sd" };
 
for_each(vec.begin(), vec.end(), 
 [](const string&s) {cout << s << " "; });
cout << endl;

transform()

  • 参数:参数12为输入序列。参数3为目的位置

  • 该算法对输入序列中每个元素调用课调用对象,并将结果写到目的位置

  • 下面使用transform算法和一个lambda表达式来将vector中的每个负数替换为绝对值。因为参数3位vec.begin(),所以就是将vec的全部元素取绝对值然后再写入vec的开头

vector vec{ -1,-2,-3,4 };
//将vec的数全部取绝对值
transform(vec.begin(), vec.end(), vec.begin(),
		[](int i) {return i < 0 ? -i : i; });
 
for (auto v = vec.begin() ; v != vec.end(); ++v)
	cout <<*v << endl;

关于“C++中算法与泛型算法的示例分析”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,使各位可以学到更多知识,如果觉得文章不错,请把它分享出去让更多的人看到。


当前标题:C++中算法与泛型算法的示例分析
分享路径:http://dzwzjz.com/article/pjhcio.html
在线咨询
服务热线
服务热线:028-86922220
TOP