大橙子网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
本文摘录于 https://tech.meituan.com/2017/04/21/mt-leaf.html
成都创新互联是一家专业提供高安企业网站建设,专注与做网站、网站设计、H5高端网站建设、小程序制作等业务。10年已为高安众多企业、政府机构等服务。创新互联专业网站建设公司优惠进行中。
2017年04月21日 作者: 照东 文章链接
业务系统对生成全局唯一ID的要求有哪些呢?
全局唯一性:不能出现重复的ID号,这是最基本的要求。
趋势递增:主键的选择应该尽量使用有序的主键保证写入性能。
单调递增:保证下一个ID一定大于上一个ID,例如事务版本号、IM增量消息、排序等特殊需求。
信息安全:如果ID是连续的,容易被恶意用户扒取,所以在一些应用场景下,会需要ID无规则、不规则。
ID生成系统应该做到如下几点:
平均延迟和TP999延迟都要尽可能低;
可用性5个9;
高QPS。
几种ID总结:
一.UUID
UUID(Universally Unique Identifier)的标准型式包含32个16进制数字,以连字号分为五段,形式为8-4-4-4-12的36个字符。
优点:
性能非常高:本地生成,没有网络消耗。
缺点:
不易于存储:UUID太长,16字节128位,通常以36长度的字符串表示,很多场景不适用。
信息不安全:基于MAC地址生成UUID的算法可能会造成MAC地址泄露,这个漏洞曾被用于寻找梅丽莎病毒的制作者位置。
ID作为主键时在特定的环境会存在一些问题,比如做DB主键的场景下,UUID就非常不适用:
① MySQL官方有明确的建议主键要尽量越短越好[4],36个字符长度的UUID不符合要求。
② 对MySQL索引不利:如果作为数据库主键,在InnoDB引擎下,UUID的无序性可能会引起数据位置频繁变动,严重影响性能。
二.类snowflake方案
这种方案大致来说是一种以划分命名空间(UUID也算,由于比较常见,所以单独分析)来生成ID的一种算法,这种方案把64-bit分别划分成多段,分开来标示机器、时间等
这种方式的优缺点是:
优点:
毫秒数在高位,自增序列在低位,整个ID都是趋势递增的。
不依赖数据库等第三方系统,以服务的方式部署,稳定性更高,生成ID的性能也是非常高的。
可以根据自身业务特性分配bit位,非常灵活。
缺点:
强依赖机器时钟,如果机器上时钟回拨,会导致发号重复或者服务会处于不可用状态。
三。数据库生成
以MySQL举例,利用给字段设置auto_increment_increment和auto_increment_offset来保证ID自增,每次业务使用下列SQL读写MySQL得到ID号。
begin;
REPLACE INTO Tickets64 (stub) VALUES ('a');
SELECT LAST_INSERT_ID();
commit;
这种方案的优缺点如下:
优点:
非常简单,利用现有数据库系统的功能实现,成本小,有DBA专业维护。
ID号单调自增,可以实现一些对ID有特殊要求的业务。
缺点:
强依赖DB,当DB异常时整个系统不可用,属于致命问题。配置主从复制可以尽可能的增加可用性,但是数据一致性在特殊情况下难以保证。主从切换时的不一致可能会导致重复发号。
ID发号性能瓶颈限制在单台MySQL的读写性能。
对于MySQL性能问题,可用如下方案解决:在分布式系统中我们可以多部署几台机器,每台机器设置不同的初始值,且步长和机器数相等。
比如有两台机器。设置步长step为2,TicketServer1的初始值为1(1,3,5,7,9,11…)、TicketServer2的初始值为2(2,4,6,8,10…)。
这是Flickr团队在2010年撰文介绍的一种主键生成策略(Ticket Servers: Distributed Unique Primary Keys on the Cheap )。
如下所示,为了实现上述方案分别设置两台机器对应的参数,TicketServer1从1开始发号,TicketServer2从2开始发号,两台机器每次发号之后都递增2。
这种架构貌似能够满足性能的需求,但有以下几个缺点:
Leaf这个名字是来自德国哲学家、数学家莱布尼茨的一句话: >There are no two identical leaves in the world > “世界上没有两片相同的树叶”
综合对比上述几种方案,每种方案都不完全符合我们的要求。所以Leaf分别在上述第二种和第三种方案上做了相应的优化,实现了Leaf-segment和Leaf-snowflake方案。
第一种Leaf-segment方案,在使用数据库的方案上,做了如下改变: - 原方案每次获取ID都得读写一次数据库,造成数据库压力大。改为利用proxy server批量获取,每次获取一个segment(step决定大小)号段的值。用完之后再去数据库获取新的号段,可以大大的减轻数据库的压力。 - 各个业务不同的发号需求用biz_tag字段来区分,每个biz-tag的ID获取相互隔离,互不影响。如果以后有性能需求需要对数据库扩容,不需要上述描述的复杂的扩容操作,只需要对biz_tag分库分表就行。
数据库表设计如下:
+-------------+--------------+------+-----+-------------------+-----------------------------+| Field | Type | Null | Key | Default | Extra | +-------------+--------------+------+-----+-------------------+-----------------------------+| biz_tag | varchar(128) | NO | PRI | | | | max_id | bigint(20) | NO | | 1 | | | step | int(11) | NO | | NULL | | | desc | varchar(256) | YES | | NULL | | | update_time | timestamp | NO | | CURRENT_TIMESTAMP | on update CURRENT_TIMESTAMP | +-------------+--------------+------+-----+-------------------+-----------------------------+
重要字段说明:biz_tag用来区分业务,max_id表示该biz_tag目前所被分配的ID号段的最大值,step表示每次分配的号段长度。原来获取ID每次都需要写数据库,现在只需要把step设置得足够大,比如1000。那么只有当1000个号被消耗完了之后才会去重新读写一次数据库。读写数据库的频率从1减小到了1/step,大致架构如下图所示:
test_tag在第一台Leaf机器上是1~1000的号段,当这个号段用完时,会去加载另一个长度为step=1000的号段,假设另外两台号段都没有更新,这个时候第一台机器新加载的号段就应该是3001~4000。同时数据库对应的biz_tag这条数据的max_id会从3000被更新成4000,更新号段的SQL语句如下:
BeginUPDATE table SET max_id=max_id+step WHERE biz_tag=xxxSELECT tag, max_id, step FROM table WHERE biz_tag=xxxCommit
这种模式有以下优缺点:
优点:
缺点:
对于第二个缺点,Leaf-segment做了一些优化,简单的说就是:
Leaf 取号段的时机是在号段消耗完的时候进行的,也就意味着号段临界点的ID下发时间取决于下一次从DB取回号段的时间,并且在这期间进来的请求也会因为DB号段没有取回来,导致线程阻塞。如果请求DB的网络和DB的性能稳定,这种情况对系统的影响是不大的,但是假如取DB的时候网络发生抖动,或者DB发生慢查询就会导致整个系统的响应时间变慢。
为此,我们希望DB取号段的过程能够做到无阻塞,不需要在DB取号段的时候阻塞请求线程,即当号段消费到某个点时就异步的把下一个号段加载到内存中。而不需要等到号段用尽的时候才去更新号段。这样做就可以很大程度上的降低系统的TP999指标。详细实现如下图所示:
采用双buffer的方式,Leaf服务内部有两个号段缓存区segment。当前号段已下发10%时,如果下一个号段未更新,则另启一个更新线程去更新下一个号段。当前号段全部下发完后,如果下个号段准备好了则切换到下个号段为当前segment接着下发,循环往复。
每个biz-tag都有消费速度监控,通常推荐segment长度设置为服务高峰期发号QPS的600倍(10分钟),这样即使DB宕机,Leaf仍能持续发号10-20分钟不受影响。
每次请求来临时都会判断下个号段的状态,从而更新此号段,所以偶尔的网络抖动不会影响下个号段的更新。
对于第三点“DB可用性”问题,我们目前采用一主两从的方式,同时分机房部署,Master和Slave之间采用 半同步方式[5] 同步数据。同时使用公司Atlas数据库中间件(已开源,改名为 DBProxy )做主从切换。当然这种方案在一些情况会退化成异步模式,甚至在 非常极端 情况下仍然会造成数据不一致的情况,但是出现的概率非常小。如果你的系统要保证100%的数据强一致,可以选择使用“类Paxos算法”实现的强一致MySQL方案,如MySQL 5.7前段时间刚刚GA的 MySQL Group Replication 。但是运维成本和精力都会相应的增加,根据实际情况选型即可。
同时Leaf服务分IDC部署,内部的服务化框架是“MTthrift RPC”。服务调用的时候,根据负载均衡算法会优先调用同机房的Leaf服务。在该IDC内Leaf服务不可用的时候才会选择其他机房的Leaf服务。同时服务治理平台OCTO还提供了针对服务的过载保护、一键截流、动态流量分配等对服务的保护措施。
Leaf-segment方案可以生成趋势递增的ID,同时ID号是可计算的,不适用于订单ID生成场景,比如竞对在两天中午12点分别下单,通过订单id号相减就能大致计算出公司一天的订单量,这个是不能忍受的。面对这一问题,我们提供了 Leaf-snowflake方案。
Leaf-snowflake方案完全沿用snowflake方案的bit位设计,即是“1+41+10+12”的方式组装ID号。对于workerID的分配,当服务集群数量较小的情况下,完全可以手动配置。Leaf服务规模较大,动手配置成本太高。所以使用Zookeeper持久顺序节点的特性自动对snowflake节点配置wokerID。Leaf-snowflake是按照下面几个步骤启动的:
除了每次会去ZK拿数据以外,也会在本机文件系统上缓存一个workerID文件。当ZooKeeper出现问题,恰好机器出现问题需要重启时,能保证服务能够正常启动。这样做到了对三方组件的弱依赖。一定程度上提高了SLA
因为这种方案依赖时间,如果机器的时钟发生了回拨,那么就会有可能生成重复的ID号,需要解决时钟回退的问题。
参见上图整个启动流程图,服务启动时首先检查自己是否写过ZooKeeper leaf_forever节点:
由于强依赖时钟,对时间的要求比较敏感,在机器工作时NTP同步也会造成秒级别的回退,建议可以直接关闭NTP同步。要么在时钟回拨的时候直接不提供服务直接返回ERROR_CODE,等时钟追上即可。 或者做一层重试,然后上报报警系统,更或者是发现有时钟回拨之后自动摘除本身节点并报警 ,如下:
//发生了回拨,此刻时间小于上次发号时间 if (timestamp < lastTimestamp) { long offset = lastTimestamp - timestamp; if (offset <= 5) { try { //时间偏差大小小于5ms,则等待两倍时间 wait(offset << 1);//wait timestamp = timeGen(); if (timestamp < lastTimestamp) { //还是小于,抛异常并上报 throwClockBackwardsEx(timestamp); } } catch (InterruptedException e) { throw e; } } else { //throw throwClockBackwardsEx(timestamp); } } //分配ID
从上线情况来看,在2017年闰秒出现那一次出现过部分机器回拨,由于Leaf-snowflake的策略保证,成功避免了对业务造成的影响。
Leaf在美团点评公司内部服务包含金融、支付交易、餐饮、外卖、酒店旅游、猫眼电影等众多业务线。目前Leaf的性能在4C8G的机器上QPS能压测到近5w/s,TP999 1ms,已经能够满足大部分的业务的需求。每天提供亿数量级的调用量,作为公司内部公共的基础技术设施,必须保证高SLA和高性能的服务,我们目前还仅仅达到了及格线,还有很多提高的空间。