大橙子网站建设,新征程启航

为企业提供网站建设、域名注册、服务器等服务

如何使用tensorboard展示神经网络的graph

这篇文章主要讲解了“如何使用tensorboard展示神经网络的graph”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“如何使用tensorboard展示神经网络的graph”吧!

专业从事网站设计、成都网站建设,高端网站制作设计,微信平台小程序开发,网站推广的成都做网站的公司。优秀技术团队竭力真诚服务,采用H5响应式网站+CSS3前端渲染技术,响应式网站设计,让网站在手机、平板、PC、微信下都能呈现。建站过程建立专项小组,与您实时在线互动,随时提供解决方案,畅聊想法和感受。

# 创建神经网络, 使用tensorboard 展示graph
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt  # 若没有 pip install matplotlib


# 定义一个神经层
def add_layer(inputs, in_size, out_size, activation_function=None):
    #add one more layer and return the output of this layer
    with tf.name_scope('layer'):
        with tf.name_scope('Weights'):
            Weights = tf.Variable(tf.random_normal([in_size, out_size]),name='W')
        with tf.name_scope('biases'):
            biases = tf.Variable(tf.zeros([1, out_size]) + 0.1,name='b')
        with tf.name_scope('Wx_plus_b'):
            Wx_plus_b = tf.matmul(inputs, Weights) + biases
        if activation_function is None:
            outputs = Wx_plus_b
        else:
            outputs = activation_function(Wx_plus_b)###
        return outputs

#make up some real data
x_data = np.linspace(-1, 1, 300)[:, np.newaxis]  # x_data值为-1到1之间,有300个单位(例子),再加一个维度newaxis,即300行*newaxis列
noise = np.random.normal(0, 0.05, x_data.shape)  # 均值为0.方差为0.05,格式和x_data一样
y_data = np.square(x_data) - 0.5 + noise

#define placeholder for inputs to network
with tf.name_scope('inputs'):
    xs = tf.placeholder(tf.float32, [None, 1],name='x_input1')  # none表示无论给多少个例子都行
    ys = tf.placeholder(tf.float32, [None, 1],name='y_input1')

# add hidden layer
l1 = add_layer(xs, 1, 10, activation_function=tf.nn.relu)
# add output layer
prediction = add_layer(l1, 10, 1, activation_function=None)

#the error between prediction and real data
with tf.name_scope('loss'):
    loss = tf.reduce_mean(
        tf.reduce_sum(tf.square(ys - prediction), reduction_indices=[1]))  # 对每个例子进行求和并取平均值 reduction_indices=[1]指按行求和

with tf.name_scope('train'):
    train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)  # 以0.1的学习效率对误差进行更正和提升

#两种初始化的方式
#init = tf.initialize_all_variables()
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)
#把整个框架加载到一个文件中去,再从文件中加载出来放到浏览器中查看
#writer=tf.train.SummaryWriter("logs/",sess.graph)
#首先找到tensorboard.exe的路径并进入c:Anaconda\Scripts,执行tensorboard.exe --logdir=代码生成的图像的路径(不能带中文)
writer=tf.summary.FileWriter("../../logs/",sess.graph)

fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax.scatter(x_data, y_data)
plt.ion()
plt.show()   #show()是一次性的展示,为了使连续的展示,加入plt.ion()

for i in range(1000):
    sess.run(train_step, feed_dict={xs: x_data, ys: y_data})
    if i % 50 == 0:
        # to see the step improment 显示实际点的数据
        # print(sess.run(loss,feed_dict = {xs:x_data,ys:y_data}))
        try:
            # 每次划线前抹除上一条线,抹除lines的第一条线,由于lines只有一条线,则为lines[0],第一次没有线
            ax.lines.remove(lines[0])
        except Exception:
            pass
        # 显示预测数据
        prediction_value = sess.run(prediction, feed_dict={xs: x_data})

        # 存储 prediction_value 的值
        lines = ax.plot(x_data, prediction_value, 'r-', lw=5)  # 用红色的线画,且宽度为5

        # 停止0.1秒后再画下一条线
        plt.pause(0.1)

生成的tensorboard的graph:

如何使用tensorboard展示神经网络的graph

感谢各位的阅读,以上就是“如何使用tensorboard展示神经网络的graph”的内容了,经过本文的学习后,相信大家对如何使用tensorboard展示神经网络的graph这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是创新互联,小编将为大家推送更多相关知识点的文章,欢迎关注!


本文标题:如何使用tensorboard展示神经网络的graph
分享URL:http://dzwzjz.com/article/podjpc.html
在线咨询
服务热线
服务热线:028-86922220
TOP