大橙子网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
Thread-per-Message模式(这项工作就交给你了)
创新互联成立于2013年,是专业互联网技术服务公司,拥有项目做网站、成都网站设计网站策划,项目实施与项目整合能力。我们以让每一个梦想脱颖而出为使命,1280元黄岛做网站,已为上家服务,为黄岛各地企业和个人服务,联系电话:13518219792
当你很忙碌的时候,这个时候公司楼下有个快递,于是你委托你的同事帮你拿一下你的快递,这样你就可以继续做自己的工作了
在Thread-Per-Message模式中,消息的委托端和执行端是不同的线程,消息的委托端会告诉执行端线程,这个工作就交给你了
Host类:
针对请求创建线程的类,主要通过开启新的线程,调用helper的handle,并将要打印的文字传递。
public class Host { private final Helper helper = new Helper(); public void request(final int count,final char c){ System.out.println("request开始"); new Thread(){ public void run(){ helper.handle(count, c); } }.start(); System.out.println("request结束"); } }
Helper类:
提供字符显示的功能,slowly方法模拟打印耗时
public class Helper { public void handle(int count ,char c){ System.out.println("handle方法开始"); for(int i=0;i
Main类:
创建Host的实例,并调用request的方法
public static void main(String[] args) { System.out.println("main begin"); Host host = new Host(); host.request(10, 'A'); host.request(20, 'B'); host.request(30, 'C'); System.out.println("main End"); }
测试结果:
main begin
request方法开始了
request方法结束
request方法开始了
request方法结束
request方法开始了
request方法结束
main End
handle方法开始
handle方法开始
handle方法开始
BACBACACBACBACBACBACBACBACBA
handle方法结束
CBCBCBCBCBCBCBCBCBCBCB
handle方法结束
CCCCCCCCCC
handle方法结束
从运行的结果可以看出,request方法,并没有等待handle方法执行结束后再执行,而是调用handle方法后就返回到request方法中,直到运行结束,所以相当于request方法将所要进行的打印一定数量字符的工作转交给了handle方法,而request方法则可以再执行笨方法中的其他的语句,不必等待handle方法完成。这也同时告诉我们,当某些工作比较耗时时,则可以通过这种模式启动新的线程来执行处理。可以将此模式应用于服务器,这样就可以减少服务器的响应时间。
讲解一下进程和线程:
线程和进程最大的区别就是内存是否共存。
每个进程有自己的独立的内存空间,一个进程不可以擅自读取和写入其他的进程的内存,由于进程的内存空间是彼此独立的,所以一个进程无需担心被其他的进程所破坏。
线程之间是可以共存的,一个线程向实例中写入内容,其他线程就可以读取该实例的内容,由于多个线程可以访问同一个实例,我们就需要保证其正确执行互斥处理。
Host设计优化:
1.使用java.util.concurrent包下的ThreadFactory接口设计Host类
public class Host { public void request(final int count,final char c){ System.out.println("request方法开始了"); threadFactory.newThread( new Runnable() { @Override public void run() { // TODO Auto-generated method stub helper.handle(count, c); } } ).start();; System.out.println("request方法结束"); } }
对应的Host实例化对象:
Host host = new Host(Executors.defaultThreadFactory());
这样设计的优势在于,原来的使用new创建的实例代码依赖于java.lang.Thread类,无法控制创建线程的部分,可复用性较低,假如使用threadFactory来保存对应类的对象,调用newThread方法创建新的线程,这样便实现了线程的创建,这样不再依赖于Thread类,而是取决于构造函数中传入的ThreadFactory对象,实现了控制线程创建的细节。
使用java.util.concurrent.Executor接口重新设计Host类:
前面的ThreadFactory接口隐藏了线程创建的细节,但是并未隐藏线程创建的操作,如果使用Executor接口,那么线程创建的操作也会被隐藏起来
public class Host{ private final Helper helper = new Helper(); private final Executor executor; public Host(Executor executor){ this.executor = executor; } public void request(final int count,final char c){ System.out.println("request方法开始了"); executor.execute(new Runnable() { @Override public void run() { // TODO Auto-generated method stub helper.handle(count, c); } }); System.out.println("request方法结束"); } }
使用java.util.concurrent.ScheduledExecutorService类创建,其可以实现调度运行
public class Host{ private final Helper helper = new Helper(); private final ScheduledExecutorService scheduledExecutorService; public Host(ScheduledExecutorService scheduledExecutorService){ this.scheduledExecutorService = scheduledExecutorService; } public void request(final int count,final char c){ System.out.println("request方法开始了"); scheduledExecutorService.schedule(new Runnable() { @Override public void run() { // TODO Auto-generated method stub helper.handle(count, c); } }, 3L, TimeUnit.SECONDS); System.out.println("request方法结束"); } }
测试主函数入口:
ScheduledExecutorService scheduledExecutorService = Executors.newScheduledThreadPool(5); Host host = new Host( scheduledExecutorService ); try { host.request(10, 'A'); host.request(20, 'B'); host.request(30, 'C'); } catch (Exception e) { // TODO Auto-generated catch block e.printStackTrace(); }finally{ scheduledExecutorService.shutdown(); System.out.println("main End"); }
总结
Client 角色调用Host角色的request方法发来的请求,该请求的实际处理则交给Helper的handle去执行,然而,如果Client直接从request中调用handle方法,那么直到实际操作结束之前,都无法从handle方法返回(request返回),这样一来request的响应性能就下降了,因此,Host角色会启动用于处理来自Client角色请求的新线程,并让该线程来调用handle,这样一来发出请求的线程便可以立即从handle中返回。这就是Thread-Per-Message模式。