大橙子网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
一、遗传算法介绍
创新互联专注于察哈尔右翼前网站建设服务及定制,我们拥有丰富的企业做网站经验。 热诚为您提供察哈尔右翼前营销型网站建设,察哈尔右翼前网站制作、察哈尔右翼前网页设计、察哈尔右翼前网站官网定制、重庆小程序开发服务,打造察哈尔右翼前网络公司原创品牌,更为您提供察哈尔右翼前网站排名全网营销落地服务。
遗传算法是通过模拟大自然中生物进化的历程,来解决问题的。大自然中一个种群经历过若干代的自然选择后,剩下的种群必定是适应环境的。把一个问题所有的解看做一个种群,经历过若干次的自然选择以后,剩下的解中是有问题的最优解的。当然,只能说有最优解的概率很大。这里,我们用遗传算法求一个函数的最大值。
f(x) = 10 * sin( 5x ) + 7 * cos( 4x ), 0 = x = 10
1、将自变量x进行编码
取基因片段的长度为10, 则10位二进制位可以表示的范围是0到1023。基因与自变量转变的公式是x = b2d(individual) * 10 / 1023。构造初始的种群pop。每个个体的基因初始值是[0, 1, 0, 1, 0, 1, 0, 1, 0, 1]
2、计算目标函数值
根据自变量与基因的转化关系式,求出每个个体的基因对应的自变量,然后将自变量代入函数f(x),求出每个个体的目标函数值。
3、适应度函数
适应度函数是用来评估个体适应环境的能力,是进行自然选择的依据。本题的适应度函数直接将目标函数值中的负值变成0. 因为我们求的是最大值,所以要使目标函数值是负数的个体不适应环境,使其繁殖后代的能力为0.适应度函数的作用将在自然选择中体现。
4、自然选择
自然选择的思想不再赘述,操作使用轮盘赌算法。其具体步骤:
假设种群中共5个个体,适应度函数计算出来的个体适应性列表是fitvalue = [1 ,3, 0, 2, 4] ,totalvalue = 10 , 如果将fitvalue画到圆盘上,值的大小表示在圆盘上的面积。在转动轮盘的过程中,单个模块的面积越大则被选中的概率越大。选择的方法是将fitvalue转化为[1 , 4 ,4 , 6 ,10], fitvalue / totalvalue = [0.1 , 0.4 , 0.4 , 0.6 , 1.0] . 然后产生5个0-1之间的随机数,将随机数从小到大排序,假如是[0.05 , 0.2 , 0.7 , 0.8 ,0.9],则将0号个体、1号个体、4号个体、4号个体、4号个体拷贝到新种群中。自然选择的结果使种群更符合条件了。
5、繁殖
假设个体a、b的基因是
a = [1, 0, 0, 0, 0, 1, 1, 1, 0, 0]
b = [0, 0, 0, 1, 1, 0, 1, 1, 1, 1]
这两个个体发生基因交换的概率pc = 0.6.如果要发生基因交换,则产生一个随机数point表示基因交换的位置,假设point = 4,则:
a = [1, 0, 0, 0, 0, 1, 1, 1, 0, 0]
b = [0, 0, 0, 1, 1, 0, 1, 1, 1, 1]
交换后为:
a = [1, 0, 0, 0, 1, 0, 1, 1, 1, 1]
b = [0, 0, 0, 1, 0, 1, 1, 1, 0, 0]
6、突变
遍历每一个个体,基因的每一位发生突变(0变为1,1变为0)的概率为0.001.突变可以增加解空间
二、代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
def b2d(b): #将二进制转化为十进制 x∈[0,10] t = 0 for j in range(len(b)): t += b[j] * (math.pow(2, j)) t = t * 10 / 1023 return tpopsize = 50 #种群的大小#用遗传算法求函数最大值:#f(x)=10*sin(5x)+7*cos(4x) x∈[0,10]chromlength = 10 #基因片段的长度pc = 0.6 #两个个体交叉的概率pm = 0.001; #基因突变的概率results = [[]]bestindividual = []bestfit = 0fitvalue = []tempop = [[]]pop = [[0, 1, 0, 1, 0, 1, 0, 1, 0, 1] for i in range(popsize)]for i in range(100): #繁殖100代 objvalue = calobjvalue(pop) #计算目标函数值 fitvalue = calfitvalue(objvalue); #计算个体的适应值 [bestindividual, bestfit] = best(pop, fitvalue) #选出最好的个体和最好的函数值 results.append([bestfit,b2d(bestindividual)]) #每次繁殖,将最好的结果记录下来 selection(pop, fitvalue) #自然选择,淘汰掉一部分适应性低的个体 crossover(pop, pc) #交叉繁殖 mutation(pop, pc) #基因突变 results.sort() print(results[-1]) #打印函数最大值和对应的
来自CODE的代码片
GA.py
1
2
3
4
5
6
7
8
9
def best(pop, fitvalue): #找出适应函数值中最大值,和对应的个体 px = len(pop) bestindividual = [] bestfit = fitvalue[0] for i in range(1,px): if(fitvalue[i] bestfit): bestfit = fitvalue[i] bestindividual = pop[i] return [bestindividual, bestfit]
来自CODE的代码片
best.py
1
2
3
4
5
6
7
8
9
10
11
def calfitvalue(objvalue):#转化为适应值,目标函数值越大越好,负值淘汰。 fitvalue = [] temp = 0.0 Cmin = 0; for i in range(len(objvalue)): if(objvalue[i] + Cmin 0): temp = Cmin + objvalue[i] else: temp = 0.0 fitvalue.append(temp) return fitvalue
来自CODE的代码片
calfitvalue.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
import mathdef decodechrom(pop): #将种群的二进制基因转化为十进制(0,1023) temp = []; for i in range(len(pop)): t = 0; for j in range(10): t += pop[i][j] * (math.pow(2, j)) temp.append(t) return tempdef calobjvalue(pop): #计算目标函数值 temp1 = []; objvalue = []; temp1 = decodechrom(pop) for i in range(len(temp1)): x = temp1[i] * 10 / 1023 #(0,1023)转化为 (0,10) objvalue.append(10 * math.sin(5 * x) + 7 * math.cos(4 * x)) return objvalue #目标函数值objvalue[m] 与个体基因 pop[m] 对应
来自CODE的代码片
calobjvalue.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
import randomdef crossover(pop, pc): #个体间交叉,实现基因交换 poplen = len(pop) for i in range(poplen - 1): if(random.random() pc): cpoint = random.randint(0,len(pop[0])) temp1 = [] temp2 = [] temp1.extend(pop[i][0 : cpoint]) temp1.extend(pop[i+1][cpoint : len(pop[i])]) temp2.extend(pop[i+1][0 : cpoint]) temp2.extend(pop[i][cpoint : len(pop[i])]) pop[i] = temp1 pop[i+1] = temp2
来自CODE的代码片
crossover.py
1
2
3
4
5
6
7
8
9
10
11
12
13
import randomdef mutation(pop, pm): #基因突变 px = len(pop) py = len(pop[0]) for i in range(px): if(random.random() pm): mpoint = random.randint(0,py-1) if(pop[i][mpoint] == 1): pop[i][mpoint] = 0 else: pop[i][mpoint] = 1
来自CODE的代码片
mutation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import randomdef sum(fitvalue): total = 0 for i in range(len(fitvalue)): total += fitvalue[i] return totaldef cumsum(fitvalue): for i in range(len(fitvalue)): t = 0; j = 0; while(j = i): t += fitvalue[j] j = j + 1 fitvalue[i] = t;def selection(pop, fitvalue): #自然选择(轮盘赌算法) newfitvalue = [] totalfit = sum(fitvalue) for i in range(len(fitvalue)): newfitvalue.append(fitvalue[i] / totalfit) cumsum(newfitvalue) ms = []; poplen = len(pop) for i in range(poplen): ms.append(random.random()) #random float list ms ms.sort() fitin = 0 newin = 0 newpop = pop while newin poplen: if(ms[newin] newfitvalue[fitin]): newpop[newin] = pop[fitin] newin = newin + 1 else: fitin = fitin + 1 pop = newpop
想象一下,您有一个线性方程组和不等式系统。这样的系统通常有许多可能的解决方案。线性规划是一组数学和计算工具,可让您找到该系统的特定解,该解对应于某些其他线性函数的最大值或最小值。
混合整数线性规划是 线性规划 的扩展。它处理至少一个变量采用离散整数而不是连续值的问题。尽管乍一看混合整数问题与连续变量问题相似,但它们在灵活性和精度方面具有显着优势。
整数变量对于正确表示自然用整数表示的数量很重要,例如生产的飞机数量或服务的客户数量。
一种特别重要的整数变量是 二进制变量 。它只能取 零 或 一 的值,在做出是或否的决定时很有用,例如是否应该建造工厂或者是否应该打开或关闭机器。您还可以使用它们来模拟逻辑约束。
线性规划是一种基本的优化技术,已在科学和数学密集型领域使用了数十年。它精确、相对快速,适用于一系列实际应用。
混合整数线性规划允许您克服线性规划的许多限制。您可以使用分段线性函数近似非线性函数、使用半连续变量、模型逻辑约束等。它是一种计算密集型工具,但计算机硬件和软件的进步使其每天都更加适用。
通常,当人们试图制定和解决优化问题时,第一个问题是他们是否可以应用线性规划或混合整数线性规划。
以下文章说明了线性规划和混合整数线性规划的一些用例:
随着计算机能力的增强、算法的改进以及更多用户友好的软件解决方案的出现,线性规划,尤其是混合整数线性规划的重要性随着时间的推移而增加。
解决线性规划问题的基本方法称为,它有多种变体。另一种流行的方法是。
混合整数线性规划问题可以通过更复杂且计算量更大的方法来解决,例如,它在幕后使用线性规划。这种方法的一些变体是,它涉及使用 切割平面 ,以及。
有几种适用于线性规划和混合整数线性规划的合适且众所周知的 Python 工具。其中一些是开源的,而另一些是专有的。您是否需要免费或付费工具取决于问题的规模和复杂性,以及对速度和灵活性的需求。
值得一提的是,几乎所有广泛使用的线性规划和混合整数线性规划库都是以 Fortran 或 C 或 C++ 原生和编写的。这是因为线性规划需要对(通常很大)矩阵进行计算密集型工作。此类库称为求解器。Python 工具只是求解器的包装器。
Python 适合围绕本机库构建包装器,因为它可以很好地与 C/C++ 配合使用。对于本教程,您不需要任何 C/C++(或 Fortran),但如果您想了解有关此酷功能的更多信息,请查看以下资源:
基本上,当您定义和求解模型时,您使用 Python 函数或方法调用低级库,该库执行实际优化工作并将解决方案返回给您的 Python 对象。
几个免费的 Python 库专门用于与线性或混合整数线性规划求解器交互:
在本教程中,您将使用SciPy和PuLP来定义和解决线性规划问题。
在本节中,您将看到线性规划问题的两个示例:
您将在下一节中使用 Python 来解决这两个问题。
考虑以下线性规划问题:
你需要找到X和Ÿ使得红色,蓝色和黄色的不平等,以及不平等X 0和ÿ 0,是满意的。同时,您的解决方案必须对应于z的最大可能值。
您需要找到的自变量(在本例中为 x 和 y )称为 决策变量 。要最大化或最小化的决策变量的函数(在本例中为 z) 称为 目标函数 、 成本函数 或仅称为 目标 。您需要满足的 不等式 称为 不等式约束 。您还可以在称为 等式约束 的约束中使用方程。
这是您如何可视化问题的方法:
红线代表的功能2 X + Ý = 20,和它上面的红色区域示出了红色不等式不满足。同样,蓝线是函数 4 x + 5 y = 10,蓝色区域被禁止,因为它违反了蓝色不等式。黄线是 x + 2 y = 2,其下方的黄色区域是黄色不等式无效的地方。
如果您忽略红色、蓝色和黄色区域,则仅保留灰色区域。灰色区域的每个点都满足所有约束,是问题的潜在解决方案。该区域称为 可行域 ,其点为 可行解 。在这种情况下,有无数可行的解决方案。
您想最大化z。对应于最大z的可行解是 最优解 。如果您尝试最小化目标函数,那么最佳解决方案将对应于其可行的最小值。
请注意,z是线性的。你可以把它想象成一个三维空间中的平面。这就是为什么最优解必须在可行区域的 顶点 或角上的原因。在这种情况下,最佳解决方案是红线和蓝线相交的点,稍后您将看到。
有时,可行区域的整个边缘,甚至整个区域,都可以对应相同的z值。在这种情况下,您有许多最佳解决方案。
您现在已准备好使用绿色显示的附加等式约束来扩展问题:
方程式 x + 5 y = 15,以绿色书写,是新的。这是一个等式约束。您可以通过向上一张图像添加相应的绿线来将其可视化:
现在的解决方案必须满足绿色等式,因此可行区域不再是整个灰色区域。它是绿线从与蓝线的交点到与红线的交点穿过灰色区域的部分。后一点是解决方案。
如果插入x的所有值都必须是整数的要求,那么就会得到一个混合整数线性规划问题,可行解的集合又会发生变化:
您不再有绿线,只有沿线的x值为整数的点。可行解是灰色背景上的绿点,此时最优解离红线最近。
这三个例子说明了 可行的线性规划问题 ,因为它们具有有界可行区域和有限解。
如果没有解,线性规划问题是 不可行的 。当没有解决方案可以同时满足所有约束时,通常会发生这种情况。
例如,考虑如果添加约束x + y 1会发生什么。那么至少有一个决策变量(x或y)必须是负数。这与给定的约束x 0 和y 0相冲突。这样的系统没有可行的解决方案,因此称为不可行的。
另一个示例是添加与绿线平行的第二个等式约束。这两行没有共同点,因此不会有满足这两个约束的解决方案。
一个线性规划问题是 无界的 ,如果它的可行区域是无界,将溶液不是有限。这意味着您的变量中至少有一个不受约束,可以达到正无穷大或负无穷大,从而使目标也无限大。
例如,假设您采用上面的初始问题并删除红色和黄色约束。从问题中删除约束称为 放松 问题。在这种情况下,x和y不会在正侧有界。您可以将它们增加到正无穷大,从而产生无限大的z值。
在前面的部分中,您研究了一个与任何实际应用程序无关的抽象线性规划问题。在本小节中,您将找到与制造业资源分配相关的更具体和实用的优化问题。
假设一家工厂生产四种不同的产品,第一种产品的日产量为x ₁,第二种产品的产量为x 2,依此类推。目标是确定每种产品的利润最大化日产量,同时牢记以下条件:
数学模型可以这样定义:
目标函数(利润)在条件 1 中定义。人力约束遵循条件 2。对原材料 A 和 B 的约束可以从条件 3 和条件 4 中通过对每种产品的原材料需求求和得出。
最后,产品数量不能为负,因此所有决策变量必须大于或等于零。
与前面的示例不同,您无法方便地将其可视化,因为它有四个决策变量。但是,无论问题的维度如何,原理都是相同的。
在本教程中,您将使用两个Python 包来解决上述线性规划问题:
SciPy 设置起来很简单。安装后,您将拥有开始所需的一切。它的子包 scipy.optimize 可用于线性和非线性优化。
PuLP 允许您选择求解器并以更自然的方式表述问题。PuLP 使用的默认求解器是COIN-OR Branch and Cut Solver (CBC)。它连接到用于线性松弛的COIN-OR 线性规划求解器 (CLP)和用于切割生成的COIN-OR 切割生成器库 (CGL)。
另一个伟大的开源求解器是GNU 线性规划工具包 (GLPK)。一些著名且非常强大的商业和专有解决方案是Gurobi、CPLEX和XPRESS。
除了在定义问题时提供灵活性和运行各种求解器的能力外,PuLP 使用起来不如 Pyomo 或 CVXOPT 等替代方案复杂,后者需要更多的时间和精力来掌握。
要学习本教程,您需要安装 SciPy 和 PuLP。下面的示例使用 SciPy 1.4.1 版和 PuLP 2.1 版。
您可以使用pip以下方法安装两者:
您可能需要运行pulptest或sudo pulptest启用 PuLP 的默认求解器,尤其是在您使用 Linux 或 Mac 时:
或者,您可以下载、安装和使用 GLPK。它是免费和开源的,适用于 Windows、MacOS 和 Linux。在本教程的后面部分,您将看到如何将 GLPK(除了 CBC)与 PuLP 一起使用。
在 Windows 上,您可以下载档案并运行安装文件。
在 MacOS 上,您可以使用 Homebrew:
在 Debian 和 Ubuntu 上,使用apt来安装glpk和glpk-utils:
在Fedora,使用dnf具有glpk-utils:
您可能还会发现conda对安装 GLPK 很有用:
安装完成后,可以查看GLPK的版本:
有关详细信息,请参阅 GLPK 关于使用Windows 可执行文件和Linux 软件包进行安装的教程。
在本节中,您将学习如何使用 SciPy优化和求根库进行线性规划。
要使用 SciPy 定义和解决优化问题,您需要导入scipy.optimize.linprog():
现在您已经linprog()导入,您可以开始优化。
让我们首先解决上面的线性规划问题:
linprog()仅解决最小化(而非最大化)问题,并且不允许具有大于或等于符号 ( ) 的不等式约束。要解决这些问题,您需要在开始优化之前修改您的问题:
引入这些更改后,您将获得一个新系统:
该系统与原始系统等效,并且将具有相同的解决方案。应用这些更改的唯一原因是克服 SciPy 与问题表述相关的局限性。
下一步是定义输入值:
您将上述系统中的值放入适当的列表、元组或NumPy 数组中:
注意:请注意行和列的顺序!
约束左侧和右侧的行顺序必须相同。每一行代表一个约束。
来自目标函数和约束左侧的系数的顺序必须匹配。每列对应一个决策变量。
下一步是以与系数相同的顺序定义每个变量的界限。在这种情况下,它们都在零和正无穷大之间:
此语句是多余的,因为linprog()默认情况下采用这些边界(零到正无穷大)。
注:相反的float("inf"),你可以使用math.inf,numpy.inf或scipy.inf。
最后,是时候优化和解决您感兴趣的问题了。你可以这样做linprog():
参数c是指来自目标函数的系数。A_ub和b_ub分别与不等式约束左边和右边的系数有关。同样,A_eq并b_eq参考等式约束。您可以使用bounds提供决策变量的下限和上限。
您可以使用该参数method来定义要使用的线性规划方法。有以下三种选择:
linprog() 返回具有以下属性的数据结构:
您可以分别访问这些值:
这就是您获得优化结果的方式。您还可以以图形方式显示它们:
如前所述,线性规划问题的最优解位于可行区域的顶点。在这种情况下,可行区域只是蓝线和红线之间的绿线部分。最优解是代表绿线和红线交点的绿色方块。
如果要排除相等(绿色)约束,只需删除参数A_eq并b_eq从linprog()调用中删除:
解决方案与前一种情况不同。你可以在图表上看到:
在这个例子中,最优解是红色和蓝色约束相交的可行(灰色)区域的紫色顶点。其他顶点,如黄色顶点,具有更高的目标函数值。
您可以使用 SciPy 来解决前面部分所述的资源分配问题:
和前面的例子一样,你需要从上面的问题中提取必要的向量和矩阵,将它们作为参数传递给.linprog(),然后得到结果:
结果告诉您最大利润是1900并且对应于x ₁ = 5 和x ₃ = 45。在给定条件下生产第二和第四个产品是没有利润的。您可以在这里得出几个有趣的结论:
opt.statusis0和opt.successis True,说明优化问题成功求解,最优可行解。
SciPy 的线性规划功能主要用于较小的问题。对于更大和更复杂的问题,您可能会发现其他库更适合,原因如下:
幸运的是,Python 生态系统为线性编程提供了几种替代解决方案,这些解决方案对于更大的问题非常有用。其中之一是 PuLP,您将在下一节中看到它的实际应用。
PuLP 具有比 SciPy 更方便的线性编程 API。您不必在数学上修改您的问题或使用向量和矩阵。一切都更干净,更不容易出错。
像往常一样,您首先导入您需要的内容:
现在您已经导入了 PuLP,您可以解决您的问题。
您现在将使用 PuLP 解决此系统:
第一步是初始化一个实例LpProblem来表示你的模型:
您可以使用该sense参数来选择是执行最小化(LpMinimize或1,这是默认值)还是最大化(LpMaximize或-1)。这个选择会影响你的问题的结果。
一旦有了模型,就可以将决策变量定义为LpVariable类的实例:
您需要提供下限,lowBound=0因为默认值为负无穷大。该参数upBound定义了上限,但您可以在此处省略它,因为它默认为正无穷大。
可选参数cat定义决策变量的类别。如果您使用的是连续变量,则可以使用默认值"Continuous"。
您可以使用变量x和y创建表示线性表达式和约束的其他 PuLP 对象:
当您将决策变量与标量相乘或构建多个决策变量的线性组合时,您会得到一个pulp.LpAffineExpression代表线性表达式的实例。
注意:您可以增加或减少变量或表达式,你可以乘他们常数,因为纸浆类实现一些Python的特殊方法,即模拟数字类型一样__add__(),__sub__()和__mul__()。这些方法用于像定制运营商的行为+,-和*。
类似地,您可以将线性表达式、变量和标量与运算符 ==、=以获取表示模型线性约束的纸浆.LpConstraint实例。
注:也有可能与丰富的比较方法来构建的约束.__eq__(),.__le__()以及.__ge__()定义了运营商的行为==,=。
考虑到这一点,下一步是创建约束和目标函数并将它们分配给您的模型。您不需要创建列表或矩阵。只需编写 Python 表达式并使用+=运算符将它们附加到模型中:
在上面的代码中,您定义了包含约束及其名称的元组。LpProblem允许您通过将约束指定为元组来向模型添加约束。第一个元素是一个LpConstraint实例。第二个元素是该约束的可读名称。
设置目标函数非常相似:
或者,您可以使用更短的符号:
现在您已经添加了目标函数并定义了模型。
注意:您可以使用运算符将 约束或目标附加到模型中,+=因为它的类LpProblem实现了特殊方法.__iadd__(),该方法用于指定 的行为+=。
对于较大的问题,lpSum()与列表或其他序列一起使用通常比重复+运算符更方便。例如,您可以使用以下语句将目标函数添加到模型中:
它产生与前一条语句相同的结果。
您现在可以看到此模型的完整定义:
模型的字符串表示包含所有相关数据:变量、约束、目标及其名称。
注意:字符串表示是通过定义特殊方法构建的.__repr__()。有关 的更多详细信息.__repr__(),请查看Pythonic OOP 字符串转换:__repr__vs__str__ .
最后,您已准备好解决问题。你可以通过调用.solve()你的模型对象来做到这一点。如果要使用默认求解器 (CBC),则不需要传递任何参数:
.solve()调用底层求解器,修改model对象,并返回解决方案的整数状态,1如果找到了最优解。有关其余状态代码,请参阅LpStatus[]。
你可以得到优化结果作为 的属性model。该函数value()和相应的方法.value()返回属性的实际值:
model.objective持有目标函数model.constraints的值,包含松弛变量的值,以及对象x和y具有决策变量的最优值。model.variables()返回一个包含决策变量的列表:
如您所见,此列表包含使用 的构造函数创建的确切对象LpVariable。
结果与您使用 SciPy 获得的结果大致相同。
注意:注意这个方法.solve()——它会改变对象的状态,x并且y!
您可以通过调用查看使用了哪个求解器.solver:
输出通知您求解器是 CBC。您没有指定求解器,因此 PuLP 调用了默认求解器。
如果要运行不同的求解器,则可以将其指定为 的参数.solve()。例如,如果您想使用 GLPK 并且已经安装了它,那么您可以solver=GLPK(msg=False)在最后一行使用。请记住,您还需要导入它:
现在你已经导入了 GLPK,你可以在里面使用它.solve():
该msg参数用于显示来自求解器的信息。msg=False禁用显示此信息。如果要包含信息,则只需省略msg或设置msg=True。
您的模型已定义并求解,因此您可以按照与前一种情况相同的方式检查结果:
使用 GLPK 得到的结果与使用 SciPy 和 CBC 得到的结果几乎相同。
一起来看看这次用的是哪个求解器:
正如您在上面用突出显示的语句定义的那样model.solve(solver=GLPK(msg=False)),求解器是 GLPK。
您还可以使用 PuLP 来解决混合整数线性规划问题。要定义整数或二进制变量,只需传递cat="Integer"或cat="Binary"到LpVariable。其他一切都保持不变:
在本例中,您有一个整数变量并获得与之前不同的结果:
Nowx是一个整数,如模型中所指定。(从技术上讲,它保存一个小数点后为零的浮点值。)这一事实改变了整个解决方案。让我们在图表上展示这一点:
如您所见,最佳解决方案是灰色背景上最右边的绿点。这是两者的最大价值的可行的解决方案x和y,给它的最大目标函数值。
GLPK 也能够解决此类问题。
现在你可以使用 PuLP 来解决上面的资源分配问题:
定义和解决问题的方法与前面的示例相同:
在这种情况下,您使用字典 x来存储所有决策变量。这种方法很方便,因为字典可以将决策变量的名称或索引存储为键,将相应的LpVariable对象存储为值。列表或元组的LpVariable实例可以是有用的。
上面的代码产生以下结果:
如您所见,该解决方案与使用 SciPy 获得的解决方案一致。最有利可图的解决方案是每天生产5.0第一件产品和45.0第三件产品。
让我们把这个问题变得更复杂和有趣。假设由于机器问题,工厂无法同时生产第一种和第三种产品。在这种情况下,最有利可图的解决方案是什么?
现在您有另一个逻辑约束:如果x ₁ 为正数,则x ₃ 必须为零,反之亦然。这是二元决策变量非常有用的地方。您将使用两个二元决策变量y ₁ 和y ₃,它们将表示是否生成了第一个或第三个产品:
除了突出显示的行之外,代码与前面的示例非常相似。以下是差异:
这是解决方案:
事实证明,最佳方法是排除第一种产品而只生产第三种产品。
就像有许多资源可以帮助您学习线性规划和混合整数线性规划一样,还有许多具有 Python 包装器的求解器可用。这是部分列表:
其中一些库,如 Gurobi,包括他们自己的 Python 包装器。其他人使用外部包装器。例如,您看到可以使用 PuLP 访问 CBC 和 GLPK。
您现在知道什么是线性规划以及如何使用 Python 解决线性规划问题。您还了解到 Python 线性编程库只是本机求解器的包装器。当求解器完成其工作时,包装器返回解决方案状态、决策变量值、松弛变量、目标函数等。
Python中有许多内置函数,不像print、len那么广为人知,但它们的功能却异常强大,用好了可以大大提高代码效率,同时提升代码的简洁度,增强可阅读性
Counter
collections在python官方文档中的解释是High-performance container datatypes,直接的中文翻译解释高性能容量数据类型。这个模块实现了特定目标的容器,以提供Python标准内建容器 dict , list , set , 和 tuple 的替代选择。在python3.10.1中它总共包含以下几种数据类型:
容器名简介
namedtuple() 创建命名元组子类的工厂函数
deque 类似列表(list)的容器,实现了在两端快速添加(append)和弹出(pop)
ChainMap 类似字典(dict)的容器类,将多个映射集合到一个视图里面
Counter 字典的子类,提供了可哈希对象的计数功能
OrderedDict 字典的子类,保存了他们被添加的顺序
defaultdict 字典的子类,提供了一个工厂函数,为字典查询提供一个默认值
UserDict 封装了字典对象,简化了字典子类化
UserList 封装了列表对象,简化了列表子类化
UserString 封装了字符串对象,简化了字符串子类化
其中Counter中文意思是计数器,也就是我们常用于统计的一种数据类型,在使用Counter之后可以让我们的代码更加简单易读。Counter类继承dict类,所以它能使用dict类里面的方法
举例
#统计词频
fruits = ['apple', 'peach', 'apple', 'lemon', 'peach', 'peach']
result = {}
for fruit in fruits:
if not result.get(fruit):
result[fruit] = 1
else:
result[fruit] += 1
print(result)
#{'apple': 2, 'peach': 3, 'lemon': 1}下面我们看用Counter怎么实现:
from collections import Counter
fruits = ['apple', 'peach', 'apple', 'lemon', 'peach', 'peach']
c = Counter(fruits)
print(dict(c))
#{'apple': 2, 'peach': 3, 'lemon': 1}显然代码更加简单了,也更容易阅读和维护了。
elements()
返回一个迭代器,其中每个元素将重复出现计数值所指定次。元素会按首次出现的顺序返回。如果一个元素的计数值小于1,elements()将会忽略它。
c = Counter(a=4, b=2, c=0, d=-2)
sorted(c.elements())
['a', 'a', 'a', 'a', 'b', 'b']most_common([n])
返回一个列表,其中包含n个最常见的元素及出现次数,按常见程度由高到低排序。如果n被省略或为None,most_common()将返回计数器中的所有元素。计数值相等的元素按首次出现的顺序排序:
Counter('abracadabra').most_common(3)
[('a', 5), ('b', 2), ('r', 2)]这两个方法是Counter中最常用的方法,其他方法可以参考 python3.10.1官方文档
实战
Leetcode 1002.查找共用字符
给你一个字符串数组words,请你找出所有在words的每个字符串中都出现的共用字符(包括重复字符),并以数组形式返回。你可以按任意顺序返回答案。
输入:words = ["bella", "label", "roller"]
输出:["e", "l", "l"]
输入:words = ["cool", "lock", "cook"]
输出:["c", "o"]看到统计字符,典型的可以用Counter完美解决。这道题是找出字符串列表里面每个元素都包含的字符,首先可以用Counter计算出每个元素每个字符出现的次数,依次取交集最后得出所有元素共同存在的字符,然后利用elements输出共用字符出现的次数
class Solution:
def commonChars(self, words: List[str]) - List[str]:
from collections import Counter
ans = Counter(words[0])
for i in words[1:]:
ans = Counter(i)
return list(ans.elements())提交一下,发现83个测试用例耗时48ms,速度还是不错的
sorted
在处理数据过程中,我们经常会用到排序操作,比如将列表、字典、元组里面的元素正/倒排序。这时候就需要用到sorted(),它可以对任何可迭代对象进行排序,并返回列表
对列表升序操作:
a = sorted([2, 4, 3, 7, 1, 9])
print(a)
# 输出:[1, 2, 3, 4, 7, 9]对元组倒序操作:
sorted((4,1,9,6),reverse=True)
print(a)
# 输出:[9, 6, 4, 1]使用参数:key,根据自定义规则,按字符串长度来排序:
fruits = ['apple', 'watermelon', 'pear', 'banana']
a = sorted(fruits, key = lambda x : len(x))
print(a)
# 输出:['pear', 'apple', 'banana', 'watermelon']all
all() 函数用于判断给定的可迭代参数iterable中的所有元素是否都为 TRUE,如果是返回 True,否则返回 False。元素除了是 0、空、None、False外都算True。注意:空元组、空列表返回值为True。
all(['a', 'b', 'c', 'd']) # 列表list,元素都不为空或0
True
all(['a', 'b', '', 'd']) # 列表list,存在一个为空的元素
False
all([0, 1,2, 3]) # 列表list,存在一个为0的元素
False
all(('a', 'b', 'c', 'd')) # 元组tuple,元素都不为空或0
True
all(('a', 'b', '', 'd')) # 元组tuple,存在一个为空的元素
False
all((0, 1, 2, 3)) # 元组tuple,存在一个为0的元素
False
all([]) # 空列表
True
all(()) # 空元组
Trueany函数正好和all函数相反:判断一个tuple或者list是否全为空,0,False。如果全为空,0,False,则返回False;如果不全为空,则返回True。
F-strings
在python3.6.2版本中,PEP 498提出一种新型字符串格式化机制,被称为 “字符串插值” 或者更常见的一种称呼是F-strings,F-strings提供了一种明确且方便的方式将python表达式嵌入到字符串中来进行格式化:
s1='Hello'
s2='World'
print(f'{s1} {s2}!')
# Hello World!在F-strings中我们也可以执行函数:
def power(x):
return x*x
x=4
print(f'{x} * {x} = {power(x)}')
# 4 * 4 = 16而且F-strings的运行速度很快,比传统的%-string和str.format()这两种格式化方法都快得多,书写起来也更加简单。
本文主要讲解了python几种冷门但好用的函数,更多内容以后会陆陆续续更新~
参数可以是任意类型。
比如可以是列表。
-------------------------------
library=['python精通','MySQL','数据分析','人工智能']
#形参
def add_book(bookname):
library.append(bookname)
print('图书添加成功!')
pass
def show_book(books):
for book in books:
print(book)
pass
pass
#调用函数
add_book('新概念英语')
show_book(library)
------------------------------
#输出列表中所有大于50的数
list1=[23,45,77,88,58,10]
def get_list(list_1):
new_list=[ ]
for e in list_1:
if e=50:
new_list.append(e)
pass
pass
print(new_list)
pass
#调用函数
get_list(list1) #[77,88,58]
------------------------------
#删除列表中小于50的数
def remove_from_list(list_1):
n=0
while nlen(list_1): p="" /len(list_1):
if list_1[n]50:
list_1.remove(list_1[n])
pass
else:
n+=1
pass
pass
print(list_1)
pass
#调用函数
remove_from_list(list1) #[77,88,58]
Python的学习内容还是比较多的,我们将学习的过程划分为4个阶段,每个阶段学习对应的内容,具体的学习顺序如下:
Python学习顺序:
①Python软件开发基础
掌握计算机的构成和工作原理
会使用Linux常用工具
熟练使用Docker的基本命令
建立Python开发环境,并使用print输出
使用Python完成字符串的各种操作
使用Python re模块进行程序设计
使用Python创建文件、访问、删除文件
掌握import 语句、From…import 语句、From…import* 语句、方法的引用、Python中的包
②Python软件开发进阶
能够使用Python面向对象方法开发软件
能够自己建立数据库,表,并进行基本数据库操作
掌握非关系数据库MongoDB的使用,掌握Redis开发
能够独立完成TCP/UDP服务端客户端软件开发,能够实现ftp、http服务器,开发邮件软件
能开发多进程、多线程软件
③Python全栈式WEB工程师
能够独立完成后端软件开发,深入理解Python开发后端的精髓
能够独立完成前端软件开发,并和后端结合,熟练掌握使用Python进行全站Web开发的技巧
④Python多领域开发
能够使用Python熟练编写爬虫软件
能够熟练使用Python库进行数据分析
招聘网站Python招聘职位数据爬取分析
掌握使用Python开源人工智能框架进行人工智能软件开发、语音识别、人脸识别
掌握基本设计模式、常用算法
掌握软件工程、项目管理、项目文档、软件测试调优的基本方法
互联网行业目前还是最热门的行业之一,学习IT技能之后足够优秀是有机会进入腾讯、阿里、网易等互联网大厂高薪就业的,发展前景非常好,普通人也可以学习。
想要系统学习,你可以考察对比一下开设有相关专业的热门学校,好的学校拥有根据当下企业需求自主研发课程的能力,中博软件学院、南京课工场、南京北大青鸟等开设python专业的学校都是不错的,建议实地考察对比一下。
祝你学有所成,望采纳。
请点击输入图片描述
多目标优化
目标优化问题一般地就是指通过一定的优化算法获得目标函数的最优化解。当优化的目标函数为一个时称之为单目标优化(Single-
objective Optimization Problem,
SOP)。当优化的目标函数有两个或两个以上时称为多目标优化(Multi-objective Optimization Problem,
MOP)。不同于单目标优化的解为有限解,多目标优化的解通常是一组均衡解。
多目标优化算法归结起来有传统优化算法和智能优化算法两大类。
1. 传统优化算法包括加权法、约束法和线性规划法等,实质上就是将多目标函数转化为单目标函数,通过采用单目标优化的方法达到对多目标函数的求解。
2. 智能优化算法包括进化算法(Evolutionary Algorithm, 简称EA)、粒子群算法(Particle Swarm Optimization, PSO)等。
Pareto最优解:
若x*∈C*,且在C中不存在比x更优越的解x,则称x*是多目标最优化模型式的Pareto最优解,又称为有效解。
一般来说,多目标优化问题并不存在一个最优解,所有可能的解都称为非劣解,也称为Pareto解。传统优化技术一般每次能得到Pareo解集中的一个,而
用智能算法来求解,可以得到更多的Pareto解,这些解构成了一个最优解集,称为Pareto最优解。它是由那些任一个目标函数值的提高都必须以牺牲其
他目标函数值为代价的解组成的集合,称为Pareto最优域,简称Pareto集。
Pareto有效(最优)解非劣解集是指由这样一些解组成的集合:与集合之外的任何解相比它们至少有一个目标函数比集合之外的解好。
求解多目标优化问题最有名的就是NSGA-II了,是多目标遗传算法,但其对解的选择过程可以用在其他优化算法上,例如粒子群,蜂群等等。这里简单介绍一下NSGA-II的选择算法。主要包含三个部分:
1. 快速非支配排序
要先讲一下支配的概念,对于解X1和X2,如果X1对应的所有目标函数都不比X2大(最小问题),且存在一个目标值比X2小,则X2被X1支配。
快速非支配排序是一个循环分级过程:首先找出群体中的非支配解集,记为第一非支配层,irank=1(irank是个体i的非支配值),将其从群体中除去,继续寻找群体中的非支配解集,然后irank=2。
2. 个体拥挤距离
为了使计算结果在目标空间比较均匀的分布,维持种群多样性,对每个个体计算拥挤距离,选择拥挤距离大的个体,拥挤距离的定义为:
L[i]d=L[i]d+(L[i+1]m−L[i−1]m)/(fmaxm−fminm)
L[i+1]m是第i+1个个体的第m目标函数值,fmaxm 和 fminm是集合中第m个目标函数的最大和最小值。
3. 精英策略选择
精英策略就是保留父代中的优良个体直接进入子代,防止获得的Pareto最优解丢失。将第t次产生的子代种群和父代种群合并,然后对合并后的新种群进行非支配排序,然后按照非支配顺序添加到规模为N的种群中作为新的父代。